Insight into the structure–function relationship of the nonheme iron halogenases involved in the biosynthesis of 4‐chlorothreonine – Thr3 from Streptomyces sp. OH‐5093 and SyrB2 from Pseudomonas syringae pv. syringae B301DR

The FEBS Journal
2012.0

Abstract

<jats:sec><jats:label /><jats:p>Molecular cloning of the biosynthetic gene cluster involved in the production of free 4‐chlorothreonine in <jats:italic><jats:styled-content style="fixed-case">S</jats:styled-content>treptomyces</jats:italic> sp. <jats:styled-content style="fixed-case">OH</jats:styled-content>‐5093 showed the presence of six <jats:styled-content style="fixed-case">ORF</jats:styled-content>s: <jats:styled-content style="fixed-case"><jats:italic>thr1</jats:italic></jats:styled-content>,<jats:styled-content style="fixed-case"> <jats:italic>thr2</jats:italic></jats:styled-content>,<jats:styled-content style="fixed-case"> <jats:italic>thr3</jats:italic></jats:styled-content>,<jats:styled-content style="fixed-case"> <jats:italic>orf1</jats:italic></jats:styled-content>,<jats:styled-content style="fixed-case"> <jats:italic>orf2</jats:italic></jats:styled-content> and <jats:styled-content style="fixed-case"><jats:italic>thr4</jats:italic></jats:styled-content>. According to bioinformatic analysis, <jats:styled-content style="fixed-case"><jats:italic>thr1</jats:italic></jats:styled-content>,<jats:styled-content style="fixed-case"> <jats:italic>thr2</jats:italic></jats:styled-content>,<jats:styled-content style="fixed-case"> <jats:italic>thr3</jats:italic></jats:styled-content> and <jats:styled-content style="fixed-case"><jats:italic>thr4</jats:italic></jats:styled-content> encode a free‐standing adenylation domain, a carrier protein, an <jats:styled-content style="fixed-case">F</jats:styled-content>e(II) nonheme α‐ketoglutarate‐dependent halogenase and a thioesterase, respectively, indicating the role of these genes in the activation and halogenation of threonine and the release of 4‐chlorothreonine in a pathway closely reflecting the formation of this amino acid in the biosynthesis of the lipodepsipeptide syringomycin from <jats:italic><jats:styled-content style="fixed-case">P</jats:styled-content>seudomonas syringae</jats:italic> pv. <jats:italic>syringae </jats:italic><jats:styled-content style="fixed-case">B</jats:styled-content>301<jats:styled-content style="fixed-case">DR</jats:styled-content>. <jats:styled-content style="fixed-case"><jats:italic>Orf1</jats:italic></jats:styled-content> and <jats:styled-content style="fixed-case"><jats:italic>orf2</jats:italic></jats:styled-content> show sequence similarity with alanyl/threonyl‐t<jats:styled-content style="fixed-case">RNA</jats:styled-content> synthetases editing domains and drug metabolite transporters, respectively. We show that <jats:styled-content style="fixed-case"><jats:italic>thr3</jats:italic></jats:styled-content> can replace the halogenase gene <jats:styled-content style="fixed-case"><jats:italic>syrB2</jats:italic></jats:styled-content> in the biosynthesis of syringomycin, by functional complementation of the mutant <jats:italic><jats:styled-content style="fixed-case">P</jats:styled-content>. s</jats:italic>. pv. <jats:italic>syringae</jats:italic> strain <jats:styled-content style="fixed-case">BR</jats:styled-content>135<jats:styled-content style="fixed-case">A</jats:styled-content>1 inactivated in <jats:styled-content style="fixed-case"><jats:italic>syrB2</jats:italic></jats:styled-content>. We also provide an insight into the structure–function relationship of halogenases <jats:styled-content style="fixed-case">T</jats:styled-content>hr3 and <jats:styled-content style="fixed-case">S</jats:styled-content>yr<jats:styled-content style="fixed-case">B</jats:styled-content>2 using homology modelling and site‐directed mutagenesis.</jats:sec><jats:sec><jats:title>Database</jats:title><jats:p>Nucleotide sequence data have been deposited in the ebi.ac.uk/<jats:styled-content style="fixed-case">EMBL</jats:styled-content>/GenBank databases under accession numbers: <jats:styled-content style="fixed-case"><jats:italic>thr1</jats:italic></jats:styled-content> (gi:378781338|<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.ncbi.nlm.nih.gov/nuccore/CCF23454">CCF23454</jats:ext-link>); <jats:styled-content style="fixed-case"><jats:italic>thr2</jats:italic></jats:styled-content> (gi:378781340|<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.ncbi.nlm.nih.gov/nuccore/CCF23456">CCF23456</jats:ext-link>); <jats:styled-content style="fixed-case"><jats:italic>thr3</jats:italic></jats:styled-content> (gi:378781341|<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.ncbi.nlm.nih.gov/nuccore/CCF23457">CCF23457</jats:ext-link>); <jats:styled-content style="fixed-case"><jats:italic>orf1</jats:italic></jats:styled-content> (gi:378781342|<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.ncbi.nlm.nih.gov/nuccore/CCF23458">CCF23458</jats:ext-link>); <jats:styled-content style="fixed-case"><jats:italic>orf2</jats:italic></jats:styled-content> (gi:378781343|<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.ncbi.nlm.nih.gov/nuccore/CCF23459">CCF23459</jats:ext-link>); <jats:styled-content style="fixed-case"><jats:italic>thr4</jats:italic></jats:styled-content> (gi:378781344|<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.ncbi.nlm.nih.gov/nuccore/CCF23460">CCF23460</jats:ext-link>)</jats:sec>

Knowledge Graph

Similar Paper

Insight into the structure–function relationship of the nonheme iron halogenases involved in the biosynthesis of 4‐chlorothreonine – <scp>T</scp>hr3 from <i><scp>S</scp>treptomyces</i> sp. <scp>OH</scp>‐5093 and <scp>S</scp>yr<scp>B</scp>2 from <i><scp>P</scp>seudomonas syringae</i> pv. <i>syringae </i><scp>B</scp>301<scp>DR</scp>
The FEBS Journal 2012.0
4-chlorothreonine, a herbicidal antimetabolite produced by streptomyces sp. OH-5093.
The Journal of Antibiotics 1994.0
A Regioselective Tryptophan 5-Halogenase Is Involved in Pyrroindomycin Biosynthesis in Streptomyces rugosporus LL-42D005
Chemistry &amp; Biology 2005.0
Cloning and functional analysis of the naphthomycin biosynthetic gene cluster in Streptomyces sp. CS
Molecular BioSystems 2011.0
Biosynthesis of the dichloroacetyl component of chloramphenicol in Streptomyces venezuelae ISP5230: genes required for halogenation
Microbiology 2004.0
Streptothricin biosynthesis is catalyzed by enzymes related to nonribosomal peptide bond formation
Journal of Bacteriology 1997.0
Genetic Characterization of the Chlorothricin Gene Cluster as a Model for Spirotetronate Antibiotic Biosynthesis
Chemistry &amp; Biology 2006.0
Role of homoserine and threonine pathway intermediates as precursors for the biosynthesis of aminoethoxyvinylglycine in Streptomyces sp. NRRL 5331
Microbiology 2004.0
Mining of a streptothricin gene cluster from Streptomyces sp. TP-A0356 genome via heterologous expression
Science China Life Sciences 2013.0
Mining of a streptothricin gene cluster from Streptomyces sp. TP-A0356 genome via heterologous expression
Science China Life Sciences 2013.0