CYP105-diverse structures, functions and roles in an intriguing family of enzymes inStreptomyces

Journal of Applied Microbiology
2014.0

Abstract

The cytochromes P450 (CYP or P450) are a large superfamily of haem-containing enzymes found in all domains of life. They catalyse a variety of complex reactions, predominantly mixed-function oxidations, often displaying highly regio- and/or stereospecific chemistry. In streptomycetes, they are predominantly associated with secondary metabolite biosynthetic pathways or with xenobiotic catabolism. Homologues of one family, CYP105, have been found in all Streptomyces species thus far sequenced. This review looks at the diverse biological functions of CYP105s and the biosynthetic/catabolic pathways they are associated with. Examples are presented showing a range of biotransformative abilities and different contexts. As biocatalysts capable of some remarkable chemistry, CYP105s have great biotechnological potential and merit detailed study. Recent developments in biotechnological applications which utilize CYP105s are described, alongside a brief overview of the benefits and drawbacks of using P450s in commercial applications. The role of CYP105s in vivo is in many cases undefined and provides a rich source for further investigation into the functions these enzymes fulfil and the metabolic pathways they participate in, in the natural environment.

Knowledge Graph

Similar Paper

CYP105-diverse structures, functions and roles in an intriguing family of enzymes in<i>Streptomyces</i>
Journal of Applied Microbiology 2014.0
Biotransformation of Isoflavone Using Enzymatic Reactions
Molecules 2013.0
A new cytochrome P450 belonging to the 107L subfamily is responsible for the efficient hydroxylation of the drug terfenadine by Streptomyces platensis
Archives of Biochemistry and Biophysics 2011.0
Guanitrypmycin Biosynthetic Pathways Imply Cytochrome P450 Mediated Regio‐ and Stereospecific Guaninyl‐Transfer Reactions
Angewandte Chemie International Edition 2019.0
Plant cytochrome P450s directing monoterpene indole alkaloid (MIA) and benzylisoquinoline alkaloid (BIA) biosynthesis
Phytochemistry Reviews 2023.0
Regio- and Stereospecificity of Filipin Hydroxylation Sites Revealed by Crystal Structures of Cytochrome P450 105P1 and 105D6 from Streptomyces avermitilis
Journal of Biological Chemistry 2010.0
Cytochrome P450 complement (CYPome) of the avermectin-producer Streptomyces avermitilis and comparison to that of Streptomyces coelicolor A3(2)
Biochemical and Biophysical Research Communications 2003.0
Unprecedented Cyclization Catalyzed by a Cytochrome P450 in Benzastatin Biosynthesis
Journal of the American Chemical Society 2018.0
Cytochrome P450 Homolog Is Responsible for C–N Bond Formation between Aglycone and Deoxysugar in the Staurosporine Biosynthesis of<i>Streptomyces</i>sp. TP-A0274
Bioscience, Biotechnology, and Biochemistry 2005.0
Cytochrome P450 Homolog Is Responsible for C–N Bond Formation between Aglycone and Deoxysugar in the Staurosporine Biosynthesis of<i>Streptomyces</i>sp. TP-A0274
Bioscience, Biotechnology, and Biochemistry 2005.0