Arylbenzofuran isolated from Dalbergia odorifera suppresses lipopolysaccharide-induced mouse BV2 microglial cell activation, which protects mouse hippocampal HT22 cells death from neuroinflammation-mediated toxicity

European Journal of Pharmacology
2014.0

Abstract

Neuroinflammation is a key mechanism against infection, injury, and trauma in the central nervous system (CNS). The heartwood of Dalbergia odorifera T. Chen is an important source of traditional Korean and Chinese medicines. (2R, 3R)-Obtusafuran (1) and isoparvifuran (2) are arylbenzofuran compounds isolated from D. odorifera. This study determined the efficacy of (1) and (2) in modulating the regulation of anti-inflammatory activity through the upregulation of heme oxygenase (HO)-1 in BV2 microglia. Compound (1) inhibited the protein expression of inducible nitric oxide synthase (iNOS), iNOS-derived nitric oxide (NO), cyclooxygenase (COX)-2, and COX-2-derived prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-stimulated mouse BV2 microglia. (2R, 3R)-Obtusafuran (1) also reduced tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) production, and these anti-neuroinflammatory effects were shown to be correlated with the suppression of the phosphorylation and degradation of inhibitor of nuclear factor kappa B-α (IκB-α), and nuclear factor kappa B nuclear (NF-κB) translocation and DNA binding activity. In addition, (1) upregulated HO-1 expression via nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) in mouse BV2 microglia. Using tin protoporphyrin (SnPP), an HO activity inhibitor, we verified that the inhibitory effects of (1) on the proinflammatory mediators and proteins were associated with the induction of HO-1 expression. Activated microglia-mediated cell death of mouse hippocampal HT22 cells was significantly repressed by (1). Our data suggest that (2R, 3R)-obtusafuran (1) has therapeutic potential against neurodegenerative diseases caused by neuroinflammation.

Knowledge Graph

Similar Paper

Arylbenzofuran isolated from Dalbergia odorifera suppresses lipopolysaccharide-induced mouse BV2 microglial cell activation, which protects mouse hippocampal HT22 cells death from neuroinflammation-mediated toxicity
European Journal of Pharmacology 2014.0
Inhibitory effect of 9-hydroxy-6,7-dimethoxydalbergiquinol from Dalbergia odorifera on the NF-κB-related neuroinflammatory response in lipopolysaccharide-stimulated mouse BV2 microglial cells is mediated by heme oxygenase-1
International Immunopharmacology 2013.0
Obovatol attenuates microglia‐mediated neuroinflammation by modulating redox regulation
British Journal of Pharmacology 2010.0
Isoliquiritigenin, from Dalbergia odorifera, up-regulates anti-inflammatory heme oxygenase-1 expression in RAW264.7 macrophages
Inflammation Research 2009.0
Anti-neuroinflammatory effect of aurantiamide acetate from the marine fungus Aspergillus sp. SF-5921: Inhibition of NF-κB and MAPK pathways in lipopolysaccharide-induced mouse BV2 microglial cells
International Immunopharmacology 2014.0
Anti-inflammatory terpenoid derivatives from the twigs of Syringa oblata var. dilatata
Phytochemistry Letters 2018.0
Anti-neuroinflammatory effects of novel 5,6-dihydrobenzo[h]quinazolin-2-amine derivatives in lipopolysaccharide-stimulated BV2 microglial cells
European Journal of Medicinal Chemistry 2022.0
Inhibitory constituents of the heartwood of Dalbergia odorifera on nitric oxide production in RAW 264.7 macrophages
Bioorganic & Medicinal Chemistry Letters 2013.0
In vitro anti-inflammatory activity of lignans isolated from Magnolia fargesii
Bioorganic & Medicinal Chemistry Letters 2009.0
Neolignans from <i>Aristolochia fordiana</i> Prevent Oxidative Stress-Induced Neuronal Death through Maintaining the Nrf2/HO-1 Pathway in HT22 Cells
Journal of Natural Products 2015.0