Characterization of the Ohmyungsamycin Biosynthetic Pathway and Generation of Derivatives with Improved Antituberculosis Activity

Biomolecules
2019.0

Abstract

<jats:p>The cyclic depsipeptides ohmyungsamycin (OMS) A (1) and B (2), isolated from the marine-derived Streptomyces sp. SNJ042, contain two non-proteinogenic amino acid residues, β-hydroxy-l-phenylalanine (β-hydroxy-l-Phe) and 4-methoxy-l-tryptophan (4-methoxy-l-Trp). Draft genome sequencing of Streptomyces sp. SNJ042 revealed the OMS biosynthetic gene cluster consisting of a nonribosomal peptide synthetase (NRPS) gene and three genes for amino acid modification. By gene inactivation and analysis of the accumulated products, we found that OhmL, encoding a P450 gene, is an l-Phe β-hydroxylase. Furthermore, OhmK, encoding a Trp 2,3-dioxygenase homolog, and OhmJ, encoding an O-methyltransferase, are suggested to be involved in hydroxylation and O-methylation reactions, respectively, in the biosynthesis of 4-methoxy-l-Trp. In addition, the antiproliferative and antituberculosis activities of the OMS derivatives dehydroxy-OMS A (4) and demethoxy-OMS A (6) obtained from the mutant strains were evaluated in vitro. Interestingly, dehydroxy-OMS A (4) displayed significantly improved antituberculosis activity and decreased cytotoxicity compared to wild-type OMS A.

Knowledge Graph

Similar Paper

Characterization of the Ohmyungsamycin Biosynthetic Pathway and Generation of Derivatives with Improved Antituberculosis Activity
Biomolecules 2019.0
Ohmyungsamycins A and B: Cytotoxic and Antimicrobial Cyclic Peptides Produced by <i>Streptomyces</i> sp. from a Volcanic Island
The Journal of Organic Chemistry 2013.0
Discovery and Biosynthesis of Atrovimycin, an Antitubercular and Antifungal Cyclodepsipeptide Featuring Vicinal-dihydroxylated Cinnamic Acyl Chain
Organic Letters 2019.0
Discovery and Biosynthesis of Atrovimycin, an Antitubercular and Antifungal Cyclodepsipeptide Featuring Vicinal-dihydroxylated Cinnamic Acyl Chain
Organic Letters 2019.0
Genome Mining of the Biosynthetic Gene Cluster of the Polyene Macrolide Antibiotic Tetramycin and Characterization of a P450 Monooxygenase Involved in the Hydroxylation of the Tetramycin B Polyol Segment
ChemBioChem 2012.0
Biosynthesis of the 4-Methyloxazoline-Containing Nonribosomal Peptides, JBIR-34 and -35, in Streptomyces sp. Sp080513GE-23
Chemistry &amp; Biology 2014.0
Biosynthesis of 2′-<i>O</i>-Methylmyxalamide D in the Myxobacterium<i>Cystobacter fuscus</i>: a Polyketide Synthase-Nonribosomal Peptide Synthetase System for the Myxalamide D Skeleton and a Methyltransferase for the Final<i>O</i>-Methylation
Bioscience, Biotechnology, and Biochemistry 2006.0
Guanitrypmycin Biosynthetic Pathways Imply Cytochrome P450 Mediated Regio‐ and Stereospecific Guaninyl‐Transfer Reactions
Angewandte Chemie International Edition 2019.0
Biosynthesis of the 4-Methyloxazoline-Containing Nonribosomal Peptides, JBIR-34 and -35, in Streptomyces sp. Sp080513GE-23
Chemistry &amp; Biology 2014.0
New WS9326A Derivatives and One New Annimycin Derivative with Antimalarial Activity are Produced by <i>Streptomyces asterosporus</i> DSM 41452 and Its Mutant
ChemBioChem 2018.0