A Cytochrome P450 Serves as an Unexpected Terpene Cyclase during Fungal Meroterpenoid Biosynthesis

Journal of the American Chemical Society
2013.0

Abstract

Viridicatumtoxin (1) is a tetracycline-like fungal meroterpenoid with a unique, fused spirobicyclic ring system. Puzzlingly, no dedicated terpene cyclase is found in the gene cluster identified in Penicillium aethiopicum. Cytochrome P450 enzymes VrtE and VrtK in the vrt gene cluster were shown to catalyze C5-hydroxylation and spirobicyclic ring formation, respectively. Feeding acyclic previridicatumtoxin to Saccharomyces cerevisiae expressing VrtK confirmed that VrtK is the sole enzyme required for cyclizing the geranyl moiety. Thus, VrtK is the first example of a P450 that can catalyze terpene cyclization, most likely via initial oxidation of C17 to an allylic carbocation. Quantum chemical modeling revealed a possible new tertiary carbocation intermediate E that forms after allylic carbocation formation. Intermediate E can readily undergo concerted 1,2-alkyl shift/1,3-hydride shift, either spontaneously or further aided by VrtK, followed by C7 Friedel-Crafts alkylation to afford 1. The most likely stereochemical course of the reaction was proposed on the basis of the results of our computations.

Knowledge Graph

Similar Paper

A Cytochrome P450 Serves as an Unexpected Terpene Cyclase during Fungal Meroterpenoid Biosynthesis
Journal of the American Chemical Society 2013.0
Uncovering the Unusual D-Ring Construction in Terretonin Biosynthesis by Collaboration of a Multifunctional Cytochrome P450 and a Unique Isomerase
Journal of the American Chemical Society 2015.0
Discovery and Characterization of a Group of Fungal Polycyclic Polyketide Prenyltransferases
Journal of the American Chemical Society 2012.0
Discovery of (±)‐Penindolenes Reveals an Unusual Indole Ring Cleavage Pathway Catalyzed by P450 Monooxygenase
Angewandte Chemie International Edition 2024.0
Cytochrome P450 as Dimerization Catalyst in Diketopiperazine Alkaloid Biosynthesis
ChemBioChem 2014.0
Unprecedented Cyclization Catalyzed by a Cytochrome P450 in Benzastatin Biosynthesis
Journal of the American Chemical Society 2018.0
A new cytochrome P450 belonging to the 107L subfamily is responsible for the efficient hydroxylation of the drug terfenadine by Streptomyces platensis
Archives of Biochemistry and Biophysics 2011.0
Cytochrome P450 Homolog Is Responsible for C–N Bond Formation between Aglycone and Deoxysugar in the Staurosporine Biosynthesis of<i>Streptomyces</i>sp. TP-A0274
Bioscience, Biotechnology, and Biochemistry 2005.0
Cytochrome P450 Homolog Is Responsible for C–N Bond Formation between Aglycone and Deoxysugar in the Staurosporine Biosynthesis of<i>Streptomyces</i>sp. TP-A0274
Bioscience, Biotechnology, and Biochemistry 2005.0
Fungal P450 Deconstructs the 2,5-Diazabicyclo[2.2.2]octane Ring En Route to the Complete Biosynthesis of 21R-Citrinadin A
Journal of the American Chemical Society 2023.0