Folding of the polyketide chain is not dictated by minimal polyketide synthase in the biosynthesis of mithramycin and anthracycline

Chemistry & Biology
1997.0

Abstract

Mithramycin, nogalamycin and aclacinomycins are aromatic polyketide antibiotics that exhibit antitumour activity. The precursors of these antibiotics are formed via a polyketide biosynthetic pathway in which acetate (for mithramycinone and nogalamycinone) or propionate (for aklavinone) is used as a starter unit and nine acetates are used as extender units. The assembly of building blocks is catalyzed by the minimal polyketide synthase (PKS). Further steps include regiospecific reductions (if any) and cyclization. In the biosynthesis of mithramycin, however, ketoreduction is omitted and the regiospecificity of the first cyclization differs from that of anthracycline antibiotics (e.g. nogalamycin and aclacinomycins). These significant differences provide a convenient means to analyze the determinants for the regiospecificity of the first cyclization step. In order to analyze a possible role of the minimal PKS in the regiospecificity of the first cyclization in polyketide biosynthesis, we expressed the mtm locus, which includes mithramycin minimal PKS genes, in Streptomyces galilaeus, which normally makes aclacinomycins, and the sno locus, which includes nogalamycin minimal PKS genes, in Streptomyces argillaceus, which normally makes mithramycin. The host strains are defective in the minimal PKS, but they express other antibiotic biosynthesis genes. Expression of the sno minimal PKS in the S. argillaceus polyketide-deficient strain generated mithramycin production. Auramycins, instead of aclacinomycins, accumulated in the recombinant S. galilaeus strains, suggesting that the mithramycin minimal PKS is responsible for the choice of starter unit. We also describe structural analysis of the compounds accumulated by a ketoreductase-deficient S. galilaeus mutant; spectroscopic studies on the major polyketide compound that accumulated revealed a first ring closure which is not typical of anthracyclines, suggesting an important role for the ketoreductase in the regiospecificity of the first cyclization. These experiments clearly support the involvement of ketoreductase and a cyclase in the regiospecific cyclization of the biosynthetic pathway for aromatic polyketides.

Knowledge Graph

Similar Paper

Folding of the polyketide chain is not dictated by minimal polyketide synthase in the biosynthesis of mithramycin and anthracycline
Chemistry & Biology 1997.0
Deciphering the biosynthetic origin of the aglycone of the aureolic acid group of anti-tumor agents
Chemistry & Biology 1996.0
Ketopremithramycins and Ketomithramycins, Four New Aureolic Acid-Type Compounds Obtained upon Inactivation of Two Genes Involved in the Biosynthesis of the Deoxysugar Moieties of the Antitumor Drug Mithramycin by <i>Streptomyces </i><i>A</i><i>rgillaceus</i>, Reveal Novel Insights into Post-PKS Tailoring Steps of the Mithramycin Biosynthetic Pathway
Journal of the American Chemical Society 2002.0
Analysis of two chromosomal regions adjacent to genes for a type II polyketide synthase involved in the biosynthesis of the antitumor polyketide mithramycin in Streptomyces argillaceus
Molecular and General Genetics MGG 1999.0
Characterization of Two Polyketide Methyltransferases Involved in the Biosynthesis of the Antitumor Drug Mithramycin byStreptomyces argillaceus
Journal of Biological Chemistry 2000.0
Characterization of Streptomyces argillaceus genes encoding a polyketide synthase involved in the biosynthesis of the antitumor mithramycin
Gene 1996.0
A gene cluster involved in nogalamycin biosynthesis fromStreptomyces nogalater: sequence analysis and complementation of early-block mutations in the anthracycline pathway
Molecular and General Genetics MGG 1996.0
Mithramycin SK, A Novel Antitumor Drug with Improved Therapeutic Index, Mithramycin SA, and Demycarosyl-mithramycin SK:  Three New Products Generated in the Mithramycin Producer <i>Streptomyces </i><i>a</i><i>rgillaceus</i> through Combinatorial Biosynthesis
Journal of the American Chemical Society 2003.0
Mithramycin SK, A Novel Antitumor Drug with Improved Therapeutic Index, Mithramycin SA, and Demycarosyl-mithramycin SK:  Three New Products Generated in the Mithramycin Producer <i>Streptomyces </i><i>a</i><i>rgillaceus</i> through Combinatorial Biosynthesis
Journal of the American Chemical Society 2003.0
Oxidative cleavage of premithramycin B is one of the last steps in the biosynthesis of the antitumor drug mithramycin
Chemistry &amp; Biology 1999.0