The two-component phoR-phoP system of Streptomyces natalensis: Inactivation or deletion of phoP reduces the negative phosphate regulation of pimaricin biosynthesis

Metabolic Engineering
2007.0

Abstract

The biosynthesis of the antifungal pimaricin in Streptomyces natalensis is very sensitive to phosphate regulation. Concentrations of inorganic phosphate above 1mM drastically reduced pimaricin production. At 10mM phosphate, expression of all the pimaricin biosynthesis (pim) genes including the pathway-specific positive regulator pimR is fully repressed. The phoU-phoR-phoP cluster of S. natalensis encoding two-component Pho system was cloned and sequenced. Binding of the response regulator PhoP to the consensus PHO boxes in the phoU-phoRP intergenic promoter region was observed. A phoP-disrupted mutant and a phoR-phoP deletion mutant were obtained. Production of pimaricin in these two mutants increased up to 80% in complex yeast extract-malt extract (YEME) or NBG media and showed reduced sensitivity to phosphate control. Four of the pim genes, pimS1, pimS4, pimC and pimG showed increased expression in the phoP-disrupted mutant. However, no consensus PHO boxes were found in the promoter regions of any of the pim genes, suggesting that phosphate control of these genes is mediated indirectly by PhoR-PhoP involving modification of pathway-specific regulators.

Knowledge Graph

Similar Paper

The two-component phoR-phoP system of Streptomyces natalensis: Inactivation or deletion of phoP reduces the negative phosphate regulation of pimaricin biosynthesis
Metabolic Engineering 2007.0
Genome-wide analysis of the regulation of pimaricin production in Streptomyces natalensis by reactive oxygen species
Applied Microbiology and Biotechnology 2014.0
Hierarchical Control on Polyene Macrolide Biosynthesis: PimR Modulates Pimaricin Production via the PAS-LuxR Transcriptional Activator PimM
PLoS ONE 2012.0
Global and pathway-specific transcriptional regulations of pactamycin biosynthesis in Streptomyces pactum
Applied Microbiology and Biotechnology 2018.0
PAS-LuxR transcriptional control of filipin biosynthesis in S. avermitilis
Applied Microbiology and Biotechnology 2014.0
Biotechnological production and application of the antibiotic pimaricin: biosynthesis and its regulation
Applied Microbiology and Biotechnology 2016.0
Activation of Secondary Metabolite Gene Clusters in Streptomyces clavuligerus by the PimM Regulator of Streptomyces natalensis
Frontiers in Microbiology 2019.0
Cascades and Networks of Regulatory Genes That Control Antibiotic Biosynthesis
Subcellular Biochemistry 2012.0
Identification of phoslactomycin biosynthetic gene clusters from Streptomyces platensis SAM-0654 and characterization of PnR1 and PnR2 as positive transcriptional regulators
Gene 2012.0
Identification of phoslactomycin biosynthetic gene clusters from Streptomyces platensis SAM-0654 and characterization of PnR1 and PnR2 as positive transcriptional regulators
Gene 2012.0