Characterization of LnmO as a pathway-specific Crp/Fnr-type positive regulator for leinamycin biosynthesis in Streptomyces atroolivaceus and its application for titer improvement

Applied Microbiology and Biotechnology
2016.0

Abstract

The cyclic adenosine monophosphate (cAMP) receptor protein/fumarate and nitrate reductase regulatory protein (Crp/Fnr) family of transcriptional regulators are pleiotropic transcriptional regulators that control a broad range of cellular functions. Leinamycin (LNM) is a potent antitumor antibiotic produced by Streptomyces atroolivaceus S-140. We previously cloned and characterized the lnm biosynthetic gene cluster from S. atroolivaceus S-140. We here report inactivation of lnmO in S. atroolivaceus S-140 and overexpression of lnmO in the S. atroolivaceus S-140 wild-type and ∆lnmE mutant SB3033 to investigate its role in LNM biosynthesis. Bioinformatics analysis revealed LnmO as the only regulator within the lnm gene cluster, exhibiting high sequence similarity to known Crp/Fnr family regulators. The inactivation of lnmO in S. atroolivaceus S-140 completely abolished LNM production but caused no apparent morphological changes, supporting that LnmO is indispensable and specific to LNM biosynthesis. Overexpression of lnmO in S. atroolivaceus S-140 and SB3033 resulted in three- and fourfold increase in LNM and LNM E1 production, respectively, supporting that LnmO acts as a positive regulator. While all of the Crp/Fnr family regulators studied to date appeared to be pleiotropic, our results support LnmO as the first Crp/Fnr family regulator that is pathway-specific. LnmO joins the growing list of regulators that could be exploited to improve secondary metabolite production in Streptomyces. Engineered strains overproducing LNM and LNM E1 will facilitate further mechanistic studies and clinical evaluation of LNM and LNM E1 as novel anticancer drugs.

Knowledge Graph

Similar Paper

Characterization of LnmO as a pathway-specific Crp/Fnr-type positive regulator for leinamycin biosynthesis in Streptomyces atroolivaceus and its application for titer improvement
Applied Microbiology and Biotechnology 2016.0
Identification and Localization of the Gene Cluster Encoding Biosynthesis of the Antitumor Macrolactam Leinamycin in <i>Streptomyces atroolivaceus</i> S-140
Journal of Bacteriology 2002.0
P450-Catalyzed Tailoring Steps in Leinamycin Biosynthesis Featuring Regio- and Stereoselective Hydroxylations and Substrate Promiscuities
Biochemistry 2018.0
Leinamycin Biosynthesis Revealing Unprecedented Architectural Complexity for a Hybrid Polyketide Synthase and Nonribosomal Peptide Synthetase
Chemistry &amp; Biology 2004.0
Synthesis and evaluation of 8,4′-dideshydroxy-leinamycin revealing new insights into the structure–activity relationship of the anticancer natural product leinamycin
Bioorganic &amp; Medicinal Chemistry Letters 2015.0
Characterization and Manipulation of the Pathway-Specific Late Regulator AlpW Reveals<i>Streptomyces ambofaciens</i>as a New Producer of Kinamycins
Journal of Bacteriology 2011.0
Cascades and Networks of Regulatory Genes That Control Antibiotic Biosynthesis
Subcellular Biochemistry 2012.0
Overproduction of lactimidomycin by cross-overexpression of genes encoding Streptomyces antibiotic regulatory proteins
Applied Microbiology and Biotechnology 2016.0
Identification of phoslactomycin biosynthetic gene clusters from Streptomyces platensis SAM-0654 and characterization of PnR1 and PnR2 as positive transcriptional regulators
Gene 2012.0
Identification of phoslactomycin biosynthetic gene clusters from Streptomyces platensis SAM-0654 and characterization of PnR1 and PnR2 as positive transcriptional regulators
Gene 2012.0