Molecular mechanism of the anti-inflammatory activity of a natural diarylnonanoid, malabaricone C

Free Radical Biology and Medicine
2012.0

Abstract

The spice-derived phenolic, malabaricone C (mal C), has recently been shown to accelerate healing of the indomethacin-induced gastric ulceration in mice. In this study, we explored its anti-inflammatory activity and investigated the underlying mechanism of the action. Mal C suppressed the microvascular permeability and the levels of tumor necrosis factor-α, interleukin-1β, and nitric oxide in the lipopolysaccharide (LPS)-administered mice. At a dose of 10 mg/kg, it showed anti-inflammatory activity comparable to that of omeprazole (5 mg/kg) and dexamethasone (50 mg/kg). It also reduced the expression and activities of inducible nitric oxide synthase, cyclooxygenase-2, as well as the pro- vs anti-inflammatory cytokine ratio in the LPS-treated RAW macrophages. Mal C was found to inhibit LPS-induced NF-kB activation in RAW 264.7 cells by blocking the MyD88-dependent pathway. Mal C suppressed NF-κB activation and iNOS promoter activity, which correlated with its inhibitory effect on IκB phosphorylation and degradation, and NF-κB nuclear translocation, in the LPS-stimulated macrophages. It also inhibited LPS-induced phosphorylation of p38 and JNK, which are also upstream activators of NF-κB, without affecting Akt phosphorylation. Mal C also effectively blocked the PKR-mediated activation of NF-κB. These findings indicate that mal C exerts an anti-inflammatory effect through NF-κB-responsive inflammatory gene expressions by inhibiting the p38 and JNK-dependent canonical NF-κB pathway as well as the PKR pathway, and is a potential therapeutic agent against acute inflammation.

Knowledge Graph

Similar Paper

Molecular mechanism of the anti-inflammatory activity of a natural diarylnonanoid, malabaricone C
Free Radical Biology and Medicine 2012.0
Malloapelta B suppresses LPS-induced NF-κB activation and NF-κB-regulated target gene products
International Immunopharmacology 2015.0
Cacalol Acetate, a Sesquiterpene from <i>Psacalium decompositum</i>, Exerts an Anti-inflammatory Effect through LPS/NF-KB Signaling in Raw 264.7 Macrophages
Journal of Natural Products 2020.0
Anti-inflammatory effects of diaporisoindole B in LPS-stimulated RAW 264.7 macrophage cells via MyD88 activated NF-κB and MAPKs pathways
Journal of Chinese Pharmaceutical Sciences 2021.0
Icariin attenuates LPS-induced acute inflammatory responses: Involvement of PI3K/Akt and NF-κB signaling pathway
European Journal of Pharmacology 2010.0
Anti-inflammatory mechanism of lonchocarpine in LPS- or poly(I:C)-induced neuroinflammation
Pharmacological Research 2017.0
Piperine inhibits LPS induced expression of inflammatory mediators in RAW 264.7 cells
Cellular Immunology 2013.0
Inhibitory effects of alternaramide on inflammatory mediator expression through TLR4-MyD88-mediated inhibition of NF-кB and MAPK pathway signaling in lipopolysaccharide-stimulated RAW264.7 and BV2 cells
Chemico-Biological Interactions 2016.0
In vitro anti-inflammatory activities of naucleoffieine H as a natural alkaloid from Nauclea officinalis Pierrc ex Pitard, through inhibition of the iNOS pathway in LPS-activated RAW 264.7 macrophages
Natural Product Research 2020.0
Andrographolide acts as an anti-inflammatory agent in LPS-stimulated RAW264.7 macrophages by inhibiting STAT3-mediated suppression of the NF-κB pathway
Journal of Ethnopharmacology 2011.0