The mtmVUC genes of the mithramycin gene cluster in Streptomycesargillaceus are involved in the biosynthesis of the sugar moieties

Molecular Genetics and Genomics
2001.0

Abstract

Mithramycin is a glycosylated aromatic polyketide produced by Streptomyces argillaceus, and is used as an antitumor drug. Three genes (mtmV, mtmU and mtmC) from the mithramycin gene cluster have been cloned, and characterized by DNA sequencing and by analysis of the products that accumulate in nonproducing mutants, which were generated by insertional inactivation of these genes. The mtm V gene codes for a 2,3-dehydratase that catalyzes early and common steps in the biosynthesis of the three sugars found in mithramycin (D-olivose, D-oliose and D-mycarose); its inactivation caused the accumulation of the nonglycosylated intermediate premithramycinone. The mtmU gene codes for a 4-ketoreductase involved in D-oliose biosynthesis, and its inactivation resulted in the accumulation of premithramycinone and premithramycin A , the first glycosylated intermediate which contains a D-olivose unit. The third gene, mtmC, is involved in D-mycarose biosynthesis and codes for a C-methyltransferase. Two mutants with lesions in the mtmC gene accumulated mithramycin intermediates lacking the D-mycarose moiety but containing D-olivose units attached to C-12a in which the 4-keto group is unreduced. This suggests that mtmC could code for a second enzyme activity, probably a D-olivose 4-ketoreductase, and that the glycosyltransferase responsible for the incorporation of D-olivose (MtmGIV) shows some degree of flexibility with respect to its sugar co-substrate, since the 4-ketoanalog is also transferred. A pathway is proposed for the biosynthesis of the three sugar moieties in mithramycin.

Knowledge Graph

Similar Paper

The mtmVUC genes of the mithramycin gene cluster in Streptomycesargillaceus are involved in the biosynthesis of the sugar moieties
Molecular Genetics and Genomics 2001.0
Characterization of two glycosyltransferases involved in early glycosylation steps during biosynthesis of the antitumor polyketide mithramycin by Streptomyces argillaceus
Molecular and General Genetics MGG 2000.0
Cloning and insertional inactivation of Streptomyces argillaceus genes involved in the earliest steps of biosynthesis of the sugar moieties of the antitumor polyketide mithramycin
Journal of Bacteriology 1997.0
Identification of Two Genes from <i>Streptomyces argillaceus</i> Encoding Glycosyltransferases Involved in Transfer of a Disaccharide during Biosynthesis of the Antitumor Drug Mithramycin
Journal of Bacteriology 1998.0
Ketopremithramycins and Ketomithramycins, Four New Aureolic Acid-Type Compounds Obtained upon Inactivation of Two Genes Involved in the Biosynthesis of the Deoxysugar Moieties of the Antitumor Drug Mithramycin by <i>Streptomyces </i><i>A</i><i>rgillaceus</i>, Reveal Novel Insights into Post-PKS Tailoring Steps of the Mithramycin Biosynthetic Pathway
Journal of the American Chemical Society 2002.0
Characterization of Two Polyketide Methyltransferases Involved in the Biosynthesis of the Antitumor Drug Mithramycin byStreptomyces argillaceus
Journal of Biological Chemistry 2000.0
Analysis of two chromosomal regions adjacent to genes for a type II polyketide synthase involved in the biosynthesis of the antitumor polyketide mithramycin in Streptomyces argillaceus
Molecular and General Genetics MGG 1999.0
Characterization of Streptomyces argillaceus genes encoding a polyketide synthase involved in the biosynthesis of the antitumor mithramycin
Gene 1996.0
Oxidative cleavage of premithramycin B is one of the last steps in the biosynthesis of the antitumor drug mithramycin
Chemistry &amp; Biology 1999.0
Engineering precursor metabolite pools for increasing production of antitumor mithramycins in Streptomyces argillaceus
Metabolic Engineering 2013.0