Characterization of two candidate flavone 8-O-methyltransferases suggests the existence of two potential routes to nevadensin in sweet basil

Phytochemistry
2013.0

Abstract

Regioselective 6-,7-,8-,3'-, and 4'-O-methylations underlie the structural diversity of lipophilic flavones produced in the trichomes of sweet basil (Ocimum basilicum L.). The positions 6, 7, and 4' are methylated by a recently described set of cation-independent enzymes. The roles of cation-dependent O-methyltransferases still require elucidation. Here, the basil trichome EST database was used to identify a Mg(2+)-dependent O-methyltransferase that was likely to accept flavonoids as substrates. The recombinant protein was found to be active with a wide range of o-diphenols, and methylated the 8-OH moiety of the flavone backbone with higher catalytic efficiency than the 3'-OH group of candidate substrates. To further investigate flavone 8-O-methylation, the activity of a putative cation-independent flavonoid 8-O-methyltransferase from the same EST collection was assessed with available substrate analogs. Notably, it was strongly inhibited by gardenin B, one of its expected products. The catalytic capacities of the two studied proteins suggest that two alternative routes to nevadensin, a major flavone in some basil cultivars, might exist. Correlating the expression of the underlying genes with the accumulation of 8-substituted flavones in four basil lines did not clarify which is the major operating pathway in vivo, yet the combined data suggested that the biochemical properties of flavone 7-O-demethylase could play a key role in determining the reaction order.

Knowledge Graph

Similar Paper

Characterization of two candidate flavone 8-O-methyltransferases suggests the existence of two potential routes to nevadensin in sweet basil
Phytochemistry 2013.0
Characterization of regioselective flavonoid O- methyltransferase from the Streptomyces sp. KCTC 0041BP
Enzyme and Microbial Technology 2018.0
Functional characterization and key residues engineering of a regiopromiscuity O-methyltransferase involved in benzylisoquinoline alkaloid biosynthesis in Nelumbo nucifera
Horticulture Research 2023.0
Isolation and characterization of two O-methyltransferases involved in benzylisoquinoline alkaloid biosynthesis in sacred lotus (Nelumbo nucifera)
Journal of Biological Chemistry 2020.0
Characterization of benzylisoquinoline alkaloid methyltransferases in Liriodendron chinense provides insights into the phylogenic basis of angiosperm alkaloid diversity
The Plant Journal 2022.0
Tapetum‐specific location of a cation‐dependent <i>O</i>‐methyltransferase in <i>Arabidopsis thaliana</i>
The Plant Journal 2008.0
Production of Two Novel Methoxy-Isoflavones from Biotransformation of 8-Hydroxydaidzein by Recombinant Escherichia coli Expressing O-Methyltransferase SpOMT2884 from Streptomyces peucetius
International Journal of Molecular Sciences 2015.0
Three New O-Methyltransferases Are Sufficient for All O-Methylation Reactions of Ipecac Alkaloid Biosynthesis in Root Culture of Psychotria ipecacuanha
Journal of Biological Chemistry 2010.0
Purification, characterization, and kinetic mechanism of <i>S</i>‐adenosyl‐<scp>l</scp>‐methionine: vitexin 2″‐<i>O</i>‐rhamnoside 7‐<i>O</i>‐methyltransferase of <i>Avena sativa</i> L
European Journal of Biochemistry 1984.0
β-Alanine Betaine Synthesis in the Plumbaginaceae. Purification and Characterization of a Trifunctional,<i>S</i>-Adenosyl-<scp>l</scp>-Methionine-Dependent<i>N</i>-Methyltransferase from <i>Limonium latifolium</i>Leaves
Plant Physiology 2001.0