<jats:title>ABSTRACT</jats:title> <jats:p> Phosphopantetheinyl transferases (PPTases) are essential to the activities of type I/II polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) through converting acyl carrier proteins (ACPs) in PKSs and peptidyl carrier proteins (PCPs) in NRPSs from inactive apo-forms into active holo-forms, leading to biosynthesis of polyketides and nonribosomal peptides. The industrial natamycin (NTM) producer, <jats:named-content content-type="genus-species">Streptomyces chattanoogensis</jats:named-content> L10, contains two PPTases (SchPPT and SchACPS) and five PKSs. Biochemical characterization of these two PPTases shows that SchPPT catalyzes the phosphopantetheinylation of ACPs in both type I PKSs and type II PKSs, SchACPS catalyzes the phosphopantetheinylation of ACPs in type II PKSs and fatty acid synthases (FASs), and the specificity of SchPPT is possibly controlled by its C terminus. Inactivation of SchPPT in <jats:named-content content-type="genus-species">S. chattanoogensis</jats:named-content> L10 abolished production of NTM but not the spore pigment, while overexpression of the SchPPT gene not only increased NTM production by about 40% but also accelerated productions of both NTM and the spore pigment. Thus, we elucidated a comprehensive phosphopantetheinylation network of PKSs and improved polyketide production by engineering the cognate PPTase in bacteria.