Enantioselective Total Synthesis of (−)-Caulamidine A

Journal of the American Chemical Society
2023.0

Abstract

Marine bryozoans continue to provide architecturally fascinating halogenated alkaloids that pose unique challenges for chemical synthesis. The antimalarial alkaloids caulamidines A and B, recently isolated from Caulibugula intermis, contain an intricate bis-amidine core and a chlorine-bearing neopentylic stereocenter. Compared to topologically similar C(20) bis(cyclotryptamine) alkaloids, caulamidines possess an additional carbon atom of unknown biosynthetic origins, which renders their entire skeleton nonsymmetric and nondimeric. Herein, we report the first total synthesis of caulamidine A and confirm its absolute configuration. Key chemical findings include the exploitation of glycol bistriflate to facilitate a rapid, diastereoselective ketone-amidine annulation reaction and a highly diastereoselective hydrogen atom transfer to correctly establish the key chlorine-bearing stereogenic center.

Knowledge Graph

Similar Paper