Tetrahydropalmatine Alleviates Hyperlipidemia by Regulating Lipid Peroxidation, Endoplasmic Reticulum Stress, and Inflammasome Activation by Inhibiting the TLR4-NF-κB Pathway

Evidence-Based Complementary and Alternative Medicine
2021.0

Abstract

Hyperlipidemia (HLP) is a lipid metabolism disorder that can induce a series of cardiovascular and cerebrovascular diseases, such as atherosclerosis, myocardial infarction, coronary heart disease, and stroke, which seriously threaten human health. Tetra-hydropalmatine (THP) is a component of the plant Rhizoma corydalis and has been shown to exert hepatoprotective and anti-inflammatory effects in HLP. However, whether THP regulates lipid peroxidation in hyperlipidemia, endoplasmic reticulum (ER) stress and inflammasome activation and even the underlying protective mechanism against HLP remain unclear. An animal model of HLP was established by feeding a high-fat diet to golden hamsters. Our results showed that THP reduced the body weight and adipose index; decreased the serum content of ALT, AST, TC, TG, and LDL-C; decreased the free fatty acid hepatic lipid content (liver index, TC, TG, and free fatty acid); inhibited oxidative stress and lipid peroxidation; extenuated hepatic steatosis; and inhibited ER stress and inflammasome activation in high-fat diet-fed golden hamsters. In addition, for the first time, the potential mechanism by which THP protects against HLP through the TLR4-NF-kappa 3 signaling pathway was demonstrated. In conclusion, these data indicate that THP attenuates HLP through a variety of effects, including antioxidative stress, anti-ER stress, and anti-inflammatory effects. In addition, THP also inhibited the TLR4-NF-kappa B signaling pathway in golden hamsters.

Knowledge Graph

Similar Paper

Tetrahydropalmatine Alleviates Hyperlipidemia by Regulating Lipid Peroxidation, Endoplasmic Reticulum Stress, and Inflammasome Activation by Inhibiting the TLR4-NF-κB Pathway
Evidence-Based Complementary and Alternative Medicine 2021.0
Tetrahydropalmatine ameliorates hepatic steatosis in nonalcoholic fatty liver disease by switching lipid metabolism via AMPK-SREBP-1c-Sirt1 signaling axis
Phytomedicine 2023.0
Tetrahydropalmatine induces the polarization of M1 macrophages to M2 to relieve limb ischemia‐reperfusion‐induced lung injury via inhibiting the TLR4/NF‐κB/NLRP3 signaling pathway
Drug Development Research 2022.0
Tetrahydropalmatine attenuates MSU crystal-induced gouty arthritis by inhibiting ROS-mediated NLRP3 inflammasome activation
International Immunopharmacology 2021.0
Tetramethylpyrazine reduces inflammation in liver fibrosis and inhibits inflammatory cytokine expression in hepatic stellate cells by modulating <scp>NLRP</scp>3 inflammasome pathway
IUBMB Life 2015.0
PPARγ/NF‐κB and TGF‐β1/Smad pathway are involved in the anti‐fibrotic effects of levo‐tetrahydropalmatine on liver fibrosis
Journal of Cellular and Molecular Medicine 2021.0
Protective effect of Hedansanqi Tiaozhi Tang against non-alcoholic fatty liver disease in vitro and in vivo through activating Nrf2/HO-1 antioxidant signaling pathway
Phytomedicine 2020.0
Tetrandrine alleviates atherosclerosis via inhibition of STING-TBK1 pathway and inflammation in macrophages
International Immunopharmacology 2023.0
Tetrahydropalmatine triggers angiogenesis via regulation of arginine biosynthesis
Pharmacological Research 2021.0
Demethylenetetrahydroberberine alleviates nonalcoholic fatty liver disease by inhibiting the NLRP3 inflammasome and oxidative stress in mice
Life Sciences 2021.0