The impact of cycleanine in cancer research: a computational study

Journal of Molecular Modeling
2022.0

Abstract

Cancer is imposing a global health burden because of the steady increase in new cases. Moreover, current anticancer therapeutics are associated with many drawbacks, mainly the emergence of resistance and the severe adverse effects. Therefore, there is a continuous need for developing new anticancer agents with novel mechanisms of action and lower side effects. Natural products have been a rich source of anticancer medication. Cycleanine, a natural product, was reported to exert an antiproliferative effect on ovarian cancer cells by causing apoptosis through activation of caspases 3/7 and cleavage of poly (ADP-ribose) polymerase to form poly (ADP-ribose) polymerase-1 (PARP1). It is well-established that PARP1 is associated with carcinogenesis, and different PARP1 inhibitors are approved as anticancer drugs. In this study, the cytotoxic activity of cycleanine was computationally investigated to determine whether it is a PARP1 inhibitor or a caspase activator. Molecular docking and molecular dynamics (MD) simulations were utilized for this purpose. The results showed that cycleanine has a good binding affinity to PARP1; moreover, MD simulation showed that it forms a stable complex with the enzyme. Consequently, the results showed that cycleanine is a potential inhibitor of the PARP1 enzyme. CI - (c) 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Knowledge Graph

Similar Paper

The impact of cycleanine in cancer research: a computational study
Journal of Molecular Modeling 2022.0
Synthesis of (aminoalkyl)cycleanine analogues: cytotoxicity, cellular uptake, and apoptosis induction in ovarian cancer cells
Bioorganic & Medicinal Chemistry Letters 2018.0
Design, synthesis, and bioactivity study on Lissodendrins B derivatives as PARP1 inhibitor
Bioorganic & Medicinal Chemistry 2022.0
Novel Tricyclic Poly(ADP-ribose) Polymerase-1 Inhibitors with Potent Anticancer Chemopotentiating Activity:  Design, Synthesis, and X-ray Cocrystal Structure
Journal of Medicinal Chemistry 2002.0
Discovery of Quinazoline-2,4(1H,3H)-dione Derivatives Containing 3-Substituted Piperizines as Potent PARP-1/2 Inhibitors─Design, Synthesis, In Vivo Antitumor Activity, and X-ray Crystal Structure Analysis
Journal of Medicinal Chemistry 2021.0
The ups and downs of Poly(ADP-ribose) Polymerase-1 inhibitors in cancer therapy–Current progress and future direction
European Journal of Medicinal Chemistry 2020.0
Synthesis of isoquinolinone-based tetracycles as poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors
Bioorganic & Medicinal Chemistry 2009.0
Synthesis and Evaluation of a New Generation of Orally Efficacious Benzimidazole-Based Poly(ADP-ribose) Polymerase-1 (PARP-1) Inhibitors as Anticancer Agents
Journal of Medicinal Chemistry 2009.0
Design, synthesis and biological evaluation of novel imidazo[4,5-c]pyridinecarboxamide derivatives as PARP-1 inhibitors
Bioorganic & Medicinal Chemistry Letters 2013.0
Discovery of Novel Bromophenol–Thiosemicarbazone Hybrids as Potent Selective Inhibitors of Poly(ADP-ribose) Polymerase-1 (PARP-1) for Use in Cancer
Journal of Medicinal Chemistry 2019.0