Sinomenine ameliorates septic acute lung injury in mice by modulating gut homeostasis via aryl hydrocarbon receptor/Nrf2 pathway

European Journal of Pharmacology
2021.0

Abstract

Sepsis is a systemic inflammatory response syndrome caused by a host's immune response to infection. Acute lung injury (ALI) is one of the most common complications of sepsis with high mortality and morbidity. Recent evidence demonstrated that the ‘gut-lung axis’ was related to the progression of septic acute lung injury, which regarded gut microbiota and intestinal barrier as two critical factors correlated with acute lung injury. Sinomenine is an isoquinoline alkaloid component extracted from Sinomenium acutum Rehd,et Wils, which has been already reported to have significant anti-inflammatory, immunosuppressive, and anti-arthritis properties. In this research, we observed that sinomenine could repair the lung injury and alleviate inflammatory response induced by cecum ligation and puncture (CLP). Illumine sequencing of 16S rDNA revealed that sinomenine could improve the richness of gut microbiota and modulate the composition of intestinal flora in cecum ligation and puncture mice. Meanwhile, sinomenine could reduce the colon pathological damage and improve the intestine barrier integrity in cecum ligation and puncture mice. We also found that the molecular mechanism of sinomenine's protective effect on intestinal tract was related to the activation of aryl hydrocarbon receptor/nuclear factor erythroid-2 related factor 2(Nrf2)pathway both in vivo and vitro experiments. Collectively, the prevention of septic acute lung injury by sinomenine might be mediated by modulating gut microbiota and restoring intestinal barrier via aryl hydrocarbon receptor/Nrf2-dependent pathway. © 2021 Elsevier B.V.

Knowledge Graph

Similar Paper

Sinomenine ameliorates septic acute lung injury in mice by modulating gut homeostasis via aryl hydrocarbon receptor/Nrf2 pathway
European Journal of Pharmacology 2021.0
<p>Sinomenine Attenuates Acetaminophen-Induced Acute Liver Injury by Decreasing Oxidative Stress and Inflammatory Response via Regulating TGF-β/Smad Pathway in vitro and in vivo</p>
Drug Design, Development and Therapy 2020.0
Sinomenine alleviates lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages
Immunopharmacology and Immunotoxicology 2020.0
Sinomenine Alleviates Severe Acute Pancreatitis by Regulating Janus Kinase 2/Signal Transducer and Transcriptional Activator 3 Signaling Pathway
Current Topics in Nutraceutical Research 2021.0
Modulatory apoptotic effects of sinomenine on Mycoplasma pneumonia through the attenuation of inflammation via ERK/JNK/NF-κB signaling pathway
Archives of Microbiology 2022.0
Neuroprotective Effects of Sinomenine on Experimental Autoimmune Encephalomyelitis via Anti-Inflammatory and Nrf2-Dependent Anti-Oxidative Stress Activity
NeuroMolecular Medicine 2023.0
Sinomenine Confers Protection Against Myocardial Ischemia Reperfusion Injury by Preventing Oxidative Stress, Cellular Apoptosis, and Inflammation
Frontiers in Pharmacology 2022.0
Leonurine: A compound with the potential to prevent acute lung injury
Experimental and Therapeutic Medicine 2022.0
Sinomenine ameliorates collagen-induced arthritis in mice by targeting GBP5 and regulating the P2X7 receptor to suppress NLRP3-related signaling pathways
Acta Pharmacologica Sinica 2023.0
Liensinine alleviates LPS-induced acute lung injury by blocking autophagic flux via PI3K/AKT/mTOR signaling pathway
Biomedicine & Pharmacotherapy 2023.0