Dihydrosanguinarine based RNA-seq approach couple with network pharmacology attenuates LPS-induced inflammation through TNF/IL-17/PI3K/AKT pathways in mice liver

International Immunopharmacology
2022.0

Abstract

Dihydrosanguinarine (DS) is one of the main chemical constituents of Corydalis bungeana Turcz. which demonstrates anti-inflammatory, antioxidant, and antimicrobial in vitro. The present study aimed to investigate the anti-inflammatory effect and its underlying mechanism of DS in vivo. The network pharmacology method was used to predict the anti-inflammatory target of DS, and it was found that PI3K-AKT signal transduction pathway was the most obvious, and the anti-inflammatory effect of DS was more specific in liver. Herein, we used AKT inhibitor AZD 5363 to block PI3K-AKT signaling pathway, to carry out animal experiments to verify the predicted results of network pharmacology. The results showed that DS exerts protective effects on LPS-induced liver inflammation in mice, and the anti-inflammatory effect of DS was attenuated after inhibiting AKT. To elucidate the potential molecular mechanisms, we performed RNA-sequence analysis in liver tissues. Transcriptome analysis showed that the "TNF signaling pathway" and "IL-17 signaling pathway" had the highest enrichment of differentially expressed genes (DEGs). Then, TNF/IL-17/PI3K-AKT signal pathways were analyzed by GSEA. It was found that AKT3, CCL2, FOS, IL-17A, IL-17RA, IL-17RE, PI3KCA, TRAF3IP2, CREB5, ICAM-1, VCAM-1, IL-1beta, IL-6, TNF-alpha and CXCL1/2/3 were significantly regulated by DS. The results of RNA-seq immuneCC predictive showed that DS could inhibit the inflammatory response mainly by reducing the degree of macrophage infiltration induced by LPS. At the same time, we use RT-qPCR, IF, WB techniques to verify the core anti-inflammatory differential genes of DS at the gene and protein expression level, confirming that DS can regulate the inflammatory response by regulating the gene expression level of TNF/IL-17/PI3K-AKT signal pathway. We also used HPLC-Q-TOF/MS technology to explore the biotransformation products of DS in the blood and liver of mice under inflammatory conditions and established the docking model of DS and its transformed compound with TNF-alpha, IL-17A, AKT3 and IL-6, which is the key target from RNA-seq analysis in this study. The results showed that DS strongly interacted with four proteins in the form of prototypes and demethylated products and exhibited anti-inflammatory effects. Our research shows that DS exerts its anti-hepatitis effect mainly by inhibiting the excessive infiltration of macrophages in mice liver induced by LPS and down-regulating the expression of genes related to TNF/IL-17/PI3K-AKT pathway. This study provides a new perspective on the potential therapeutic application of DS and the plasticity of anti-LPS-induced liver inflammation in DS. CI - Copyright (c) 2022 Elsevier B.V. All rights reserved.

Knowledge Graph

Similar Paper

Dihydrosanguinarine based RNA-seq approach couple with network pharmacology attenuates LPS-induced inflammation through TNF/IL-17/PI3K/AKT pathways in mice liver
International Immunopharmacology 2022.0
Corynoline protects lipopolysaccharide‐induced mastitis through regulating <scp>AKT</scp>/<scp>GSK3β</scp>/<scp>Nrf2</scp> signaling pathway
Environmental Toxicology 2021.0
Luteolin and chicoric acid synergistically inhibited inflammatory responses via inactivation of PI3K-Akt pathway and impairment of NF-κB translocation in LPS stimulated RAW 264.7 cells
European Journal of Pharmacology 2011.0
Icariin attenuates LPS-induced acute inflammatory responses: Involvement of PI3K/Akt and NF-κB signaling pathway
European Journal of Pharmacology 2010.0
Inhibition of TNF-α-Induced Inflammation by Andrographolide via Down-Regulation of the PI3K/Akt Signaling Pathway
Journal of Natural Products 2011.0
Sophoraflavanone G from Sophora alopecuroides inhibits lipopolysaccharide-induced inflammation in RAW264.7 cells by targeting PI3K/Akt, JAK/STAT and Nrf2/HO-1 pathways
International Immunopharmacology 2016.0
18α-Glycyrrhetinic acid monoglucuronide as an anti-inflammatory agent through suppression of the NF-κB and MAPK signaling pathway
MedChemComm 2017.0
Investigation of sanguinarine and chelerythrine effects on LPS-induced inflammatory gene expression in THP-1 cell line
Phytomedicine 2012.0
Anti-inflammatory effects of diaporisoindole B in LPS-stimulated RAW 264.7 macrophage cells via MyD88 activated NF-κB and MAPKs pathways
Journal of Chinese Pharmaceutical Sciences 2021.0
Cytotoxic Effects of the Benzophenanthridine Alkaloids Isolated from Eomecon chionantha on MCF‐7 Cells and Its Potential Mechanism
Chemistry &amp; Biodiversity 2023.0