Neferine suppresses autophagy‐induced inflammation, oxidative stress and adipocyte differentiation in Graves' orbitopathy

Journal of Cellular and Molecular Medicine
2021.0

Abstract

Previous studies in Graves' orbitopathy (GO) patient-derived fibroblasts showed that inhibition of autophagy suppresses adipogenic differentiation. Autophagy activation is associated with inflammation, production of reactive oxygen species and fibrosis. Neferine is an alkaloid extracted from Nelumbo nucifera, which induces Nrf2 expression and inhibits autophagy. Here, we have elucidated the role of neferine on interleukin (IL)-13-induced autophagy using patient-derived orbital fibroblasts as an in vitro model of GO. GO patient-derived orbital fibroblasts were isolated and cultured to generate an in vitro model of GO. Autophagy was determined by Western blot detection of the markers such as Beclin-1, Atg-5 and LC3 and by immunofluorescence detection of autophagosome formation. Analysis of differentiation towards an adipogenic lineage was performed by Oil red O staining. The expression of inflammatory factors was detected by ELISA and semiquantitative RT-PCR. Neferine inhibited autophagy in GO orbital fibroblasts, as indicated by the suppression of IL-13-induced autophagosome formation, overexpression of autophagy markers, increased LC3-II/LC3-I levels and finally down-regulation of p62. Neferine suppressed IL-13-induced inflammation, ROS generation, fibrosis and adipogenic differentiation in GO patient-derived orbital fibroblasts. The anti-inflammatory, antioxidant and antiadipogenic effects of neferine were accompanied by the up-regulation of Nrf2. These results indicated that orbital tissue remodelling and inflammation in GO may be mediated by autophagy, and neferine suppressed autophagy-related inflammation and adipogenesis through a mechanism involving Nrf2.

Knowledge Graph

Similar Paper

Neferine suppresses autophagy‐induced inflammation, oxidative stress and adipocyte differentiation in Graves' orbitopathy
Journal of Cellular and Molecular Medicine 2021.0
Neferine Protects Against Brain Damage in Permanent Cerebral Ischemic Rat Associated with Autophagy Suppression and AMPK/mTOR Regulation
Molecular Neurobiology 2021.0
Neferine promotes the apoptosis of HNSCC through the accumulation of p62/SQSTM1 caused by autophagic flux inhibition
International Journal of Molecular Medicine 2021.0
Neferine Exerts Antioxidant and Anti-Inflammatory Effects on Carbon Tetrachloride-Induced Liver Fibrosis by Inhibiting the MAPK and NF-κB/IκBα Pathways
Evidence-Based Complementary and Alternative Medicine 2021.0
Neferine induces mitochondrial dysfunction to exert anti-proliferative and anti-invasive activities on retinoblastoma
Experimental Biology and Medicine 2020.0
Effect of Neferine on DNCB-Induced Atopic Dermatitis in HaCaT Cells and BALB/c Mice
International Journal of Molecular Sciences 2021.0
Neferine, an alkaloid from lotus seed embryo targets <scp>HeLa</scp> and <scp>SiHa</scp> cervical cancer cells via pro‐oxidant anticancer mechanism
Phytotherapy Research 2020.0
Neferine ameliorates nonalcoholic steatohepatitis through regulating AMPK pathway
Phytomedicine 2023.0
Neferine mitigates cisplatin-induced acute kidney injury in mice by regulating autophagy and apoptosis
Clinical and Experimental Nephrology 2023.0
Chemomodulatory effect of neferine on DMBA‐induced squamous cell carcinogenesis: Biochemical and molecular approach
Environmental Toxicology 2021.0