UHPLC-Q-Exactive Orbitrap MS/MS-Based Untargeted Metabolomics and Molecular Networking Reveal the Differential Chemical Constituents of the Bulbs and Flowers of Fritillaria thunbergii

Molecules
2022.0

Abstract

Both the bulbs and flowers of Fritillaria thunbergii Miq. (BFT and FFT) are widely applied as expectorants and antitussives in traditional Chinese medicine, but few studies have been conducted to compare the chemical compositions of these plant parts. In this study, 50% methanol extracts of BFT and FFT were analyzed via UHPLC-Q-Exactive Orbitrap MS/MS, and the feasibility of using non-targeted UHPLC-HRMS metabolomics and molecular networking to address the authentication of bulb and flower samples was evaluated. Principal component analysis (PCA), Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA), and heat map analysis showed there were dissimilar metabolites in BFT and FFT. As a result, 252 and 107 peaks in positive ion mode and negative mode, respectively, were considered to represent significant difference variables between BFT and FFT. Then, MS/MS-based molecular networking of BFT and FFT was constructed to perform an in-depth characterization of the peaks using different variables. A total of 31 alkaloids with significant differences were annotated in this paper, including seven cis-D/E-vevanine without C20-OH and one trans-D/E-cevanine with C20-OH, thirteen trans-D/E-cevanine without C20-OH, five cevanine N-oxide, and five veratramine. Among the 31 alkaloids, eight alkaloids had higher FFT than BFT contents, while all the flavonoids identified in our work had greater FFT than BFT contents. The influence of different ingredients on the pharmacological activities of BFT and FFT should be investigated in future studies.

Knowledge Graph

Similar Paper

UHPLC-Q-Exactive Orbitrap MS/MS-Based Untargeted Metabolomics and Molecular Networking Reveal the Differential Chemical Constituents of the Bulbs and Flowers of Fritillaria thunbergii
Molecules 2022.0
Characterizing distribution of steroidal alkaloids in Fritillaria spp. and related compound formulas by liquid chromatography–mass spectrometry combined with hierarchial cluster analysis
Journal of Chromatography A 2009.0
A strategy integrating improved mass defect filtering, diagnostic product ions, and molecular network for rapid screening and systematic characterization of steroidal alkaloids in Fritillaria ussuriensis
Microchemical Journal 2024.0
Diagnostic fragmentation‐assisted mass spectral networking coupled with in silico dereplication for deep annotation of steroidal alkaloids in medicinal Fritillariae Bulbus
Journal of Mass Spectrometry 2020.0
Rapid Identification of Alkaloids and Flavonoids in Fissistigma oldhamii var. longistipitatum by Ultra High-Performance Liquid Chromatography and Quadrupole Time-of-Flight Tandem Mass Spectrometry
Journal of Chromatographic Science 2023.0
Chemical characterization and comparative analysis of different parts of Cocculus orbiculatus through UHPLC-Q-TOF-MS
Analytical Methods 2024.0
Molecular Network-Guided Alkaloid Profiling of Aerial Parts of Papaver nudicaule L. Using LC-HRMS
Molecules 2020.0
Comparative Research of Chemical Profiling in Different Parts of Fissistigma oldhamii by Ultra-High-Performance Liquid Chromatography Coupled with Hybrid Quadrupole-Orbitrap Mass Spectrometry
Molecules 2021.0
Application of metabolomics and molecular networking in investigating the chemical profile and antitrypanosomal activity of British bluebells (Hyacinthoides non-scripta)
Scientific Reports 2019.0
Study on the destructive effect to inherent quality of Fritillaria thunbergii Miq. (Zhebeimu) by sulfur-fumigated process using chromatographic fingerprinting analysis
Phytomedicine 2012.0