Combined Transcriptome and Metabolome Analysis Reveals Adaptive Defense Responses to DON Induction in Potato

International Journal of Molecular Sciences
2023.0

Abstract

Phytophthora infestans poses a serious threat to potato production, storage, and processing. Understanding plant immunity triggered by fungal elicitors is important for the effective control of plant diseases. However, the role of the potato stress response to Fusarium toxin deoxynivalenol (DON)-induced stress is still not fully understood. In this study, the metabolites of DON-treated potato tubers were studied for four time intervals using UPLC-MS/MS. We identified 676 metabolites, and differential accumulation metabolite analysis showed that alkaloids, phenolic acids, and flavonoids were the major differential metabolites that directly determined defense response. Transcriptome data showed that differentially expressed genes (DEGs) were significantly enriched in phenylpropane and flavonoid metabolic pathways. Weighted gene co-expression network analysis (WGCNA) identified many hub genes, some of which modulate plant immune responses. This study is important for understanding the metabolic changes, transcriptional regulation, and physiological responses of active and signaling substances during DON induction, and it will help to design defense strategies against Phytophthora infestans in potato.

Knowledge Graph

Similar Paper

Combined Transcriptome and Metabolome Analysis Reveals Adaptive Defense Responses to DON Induction in Potato
International Journal of Molecular Sciences 2023.0
Early and Late Transcriptomic and Metabolomic Responses of Rhododendron ‘Xiaotaohong’ Petals to Infection with Alternaria sp.
International Journal of Molecular Sciences 2023.0
A Metabolic Profiling Strategy for the Dissection of Plant Defense against Fungal Pathogens
PLoS ONE 2014.0
Amorphophallus muelleri activates ferulic acid and phenylpropane biosynthesis pathways to defend against Fusarium solani infection
Frontiers in Plant Science 2023.0
The Lipopolysaccharide-Induced Metabolome Signature in Arabidopsis thaliana Reveals Dynamic Reprogramming of Phytoalexin and Phytoanticipin Pathways
PLOS ONE 2016.0
Elucidating the Differentiation Synthesis Mechanisms of Differently Colored Resistance Quinoa Seedings Using Metabolite Profiling and Transcriptome Analysis
Metabolites 2023.0
Integrated transcriptomic and metabolomic analyses reveal key metabolic pathways in response to potassium deficiency in coconut (Cocos nucifera L.) seedlings
Frontiers in Plant Science 2023.0
Metabolome profile variations in common bean (Phaseolus vulgaris L.) resistant and susceptible genotypes incited by rust (Uromyces appendiculatus)
Frontiers in Genetics 2023.0
Comparative transcriptome and metabolome analyses of cherry leaves spot disease caused by Alternaria alternata
Frontiers in Plant Science 2023.0
Metabolomic Characterisation of Discriminatory Metabolites Involved in Halo Blight Disease in Oat Cultivars Caused by Pseudomonas syringae pv. coronafaciens
Metabolites 2022.0