Tonkinensine B induces apoptosis through mitochondrial dysfunction and inactivation of the PI3K/AKT pathway in triple-negative breast cancer cells

Journal of Pharmacy and Pharmacology
2021.0

Abstract

OBJECTIVES: Tonkinensine B, a novel compound with cytisine-pterocarpan skeleton isolated from the root of Sophora tonkinensis Gagnep, was reported to have a significant antitumor effect. The effect and intrinsic mechanism of tonkinensine B on tumour need to be further investigated. METHODS: With the help of cell cytotoxicity, the effect of tonkinensine B on MDA-MB-231 cells was investigated. By observing mitochondrial function changes, the intrinsic mechanism was further studied. The levels of key apoptosis-associated proteins Bcl-2, Bax, caspase-9, caspase-3 and AKT in MDA-MB-231 cells were analysed to determine whether tonkinensine B caused apoptosis via the mitochondrial pathway. KEY FINDINGS: After treated with tonkinensine B, MDA-MB-231 cells multiplication was repressed, and the decreased mitochondrial membrane potential, loss of ATP synthesis and elevated ROS generation were detected. Furthermore, the proportions of Bax/Bcl-2, cleaved caspase-3 and caspase-9 proteins production were up-regulated, indicating that tonkinensine B acted on intrinsic mitochondrial-mediated apoptosis pathway. In addition, tonkinensine B also reduced phosphorylation levels of AKT, and thus the activation of apoptosis might likewise be correlated with the inhibition of the PI3K/AKT pathway. CONCLUSIONS: Tonkinensine B may be a hopeful candidate for human triple-negative breast cancer, and further structural optimization is expected to improve its anti-tumour activity. CI - (c) The Author(s) 2021. Published by Oxford University Press on behalf of the Royal Pharmaceutical Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Knowledge Graph

Similar Paper

Tonkinensine B induces apoptosis through mitochondrial dysfunction and inactivation of the PI3K/AKT pathway in triple-negative breast cancer cells
Journal of Pharmacy and Pharmacology 2021.0
Synthesis and in vitro anticancer evaluation of novel flavonoid-based amide derivatives as regulators of the PI3K/AKT signal pathway for TNBC treatment
RSC Medicinal Chemistry 2022.0
Identification of Antrocin from Antrodia camphorata as a Selective and Novel Class of Small Molecule Inhibitor of Akt/mTOR Signaling in Metastatic Breast Cancer MDA-MB-231 Cells
Chemical Research in Toxicology 2011.0
Tonkinensines A and B, two novel alkaloids from Sophora tonkinensis
Tetrahedron Letters 2008.0
Tonkinensines A and B, two novel alkaloids from Sophora tonkinensis
Tetrahedron Letters 2008.0
3-Epipachysamine B suppresses proliferation and induces apoptosis of breast cancer cell via PI3K/AKT/mTOR signaling pathway
Life Sciences 2021.0
Anti-leukemic effect and molecular mechanism of 11-methoxytabersonine from Melodinus cochinchinensis via network pharmacology, ROS-mediated mitochondrial dysfunction and PI3K/Akt signaling pathway
Bioorganic Chemistry 2022.0
PI3K/AKT1 Signaling Pathway Mediates Sinomenine-Induced Hepatocellular Carcinoma Cells Apoptosis: An <i>in Vitro</i> and <i>in Vivo</i> Study
Biological and Pharmaceutical Bulletin 2022.0
Isoliensinine induces cervical cancer cell cycle arrest and apoptosis by inhibiting the AKT/GSK3α pathway
Oncology Letters 2021.0
Atractylenolide‐1 affects glycolysis/gluconeogenesis by downregulating the expression of TPI1 and GPI to inhibit the proliferation and invasion of human triple‐negative breast cancer cells
Phytotherapy Research 2023.0