Chemical profile and potential mechanisms of Huo-Tan-Chu-Shi decoction in the treatment of coronary heart disease by UHPLC-Q/TOF-MS in combination with network pharmacology analysis and experimental verification

Journal of Chromatography B
2021.0

Abstract

Huo-Tan-Chu-Shi Decoction (HTCSD), a traditional Chinese medicine (TCM) prescription within Guangdong Provincial TCM Hospital (the largest TCM hospital in China), is used for effective clinical treatment of coronary heart disease (CHD) caused by phlegm-dampness syndrome with high incidence in the hot and humid climate of Lingnan region. However, its chemical components responsible for the therapeutic effects remain unclear, which restricts its application and further development. Hence, a detailed workflow, combing with UHPLC-Q/TOF-MS, network pharmacology analysis and experimental verification, was proposed and applied to characterize the chemical profile and potential mechanism of HTCSD against CHD. As a result, a total of 130 components from all six composed herbal medicines were characterized in a rapid and sensitive manner through UHPLC-Q/TOF-MS, of which 33 compounds were unambiguously confirmed with reference standards. Consequently, based on the integrated pharmacology network of herbs-chemicals-targets-pathways-therapeutic effects, four chemicals (magnoflorine, menisperine, 13-hydroxyberberine, luteolin) with four CHD related targets (SRC, MAPK1, EGFR and AKT1) were considered as the key components and targets of HTCSD in the treatment of CHD. Furthermore, the effect of HTCSD was confirmed in animal experiments by enhancing the phosphorylation of MAPK, and the published literature and molecular binding results suggested that magnoflorine and luteolin tended to be the critical compounds involved in the process. Taken together, the characterization of chemical profile combined with network pharmacology analysis and experimental verification not only provided an efficient insight into the overall chemical profile of HTCSD but also revealed the potential pharmacological components and mechanisms of HTCSD against CHD, which laid a necessary chemical and biological basis for the discovery of in vivo bioactive components and the further revelation of functionary mechanism.

Knowledge Graph

Similar Paper

Chemical profile and potential mechanisms of Huo-Tan-Chu-Shi decoction in the treatment of coronary heart disease by UHPLC-Q/TOF-MS in combination with network pharmacology analysis and experimental verification
Journal of Chromatography B 2021.0
Rapid characterization of the chemical constituents of Sanhua decoction by UHPLC coupled with Fourier transform ion cyclotron resonance mass spectrometry
RSC Advances 2020.0
Identifying the molecular basis of Jinhong tablets against chronic superficial gastritis via chemical profile identification and symptom-guided network pharmacology analysis
Journal of Pharmaceutical Analysis 2022.0
The combination of UHPLC-HRMS and molecular networking improving discovery efficiency of chemical components in Chinese Classical Formula
Chinese Medicine 2021.0
Chemical profliling of Dingkun Dan by ultra High performance liquid chromatography Q exactive orbitrap high resolution mass spectrometry
Journal of Pharmaceutical and Biomedical Analysis 2020.0
Characterization of the bioactive compounds with efficacy against gout in Guizhi Shaoyao Zhimu Decoction by UHPLC-Q-Orbitrap HRMS combined with network pharmacological analysis
Arabian Journal of Chemistry 2021.0
Chemical characterization and metabolic profiling of Xiao-Er-An-Shen Decoction by UPLC-QTOF/MS
Frontiers in Pharmacology 2023.0
Rapid identification of chemical profile in Gandou decoction by UPLC-Q-TOF-MSE coupled with novel informatics UNIFI platform
Journal of Pharmaceutical Analysis 2020.0
Comprehensive profiling and characterization of the absorbed components and metabolites in mice serum and tissues following oral administration of Qing-Fei-Pai-Du decoction by UHPLC-Q-Exactive-Orbitrap HRMS
Chinese Journal of Natural Medicines 2021.0
Rapid separation and identification of 96 main constituents in Huanglian Jiedu decoction via ultra‐high performance liquid chromatography–Orbitrap Fusion Tribrid mass spectrometer
Journal of Mass Spectrometry 2022.0