Berberine alleviates palmitic acid‑induced podocyte apoptosis by reducing reactive oxygen species‑mediated endoplasmic reticulum stress

Molecular Medicine Reports
2020.0

Abstract

Lipid accumulation in podocytes can lead to the destruction of cellular morphology, in addition to cell dysfunction and apoptosis, which is a key factor in the progression of chronic kidney disease (CKD). Berberine (BBR) is an isoquinoline alkaloid extracted from medicinal plants such as Coptis chinensis, which has been reported to have a lipid-lowering effect and prevent CKD progression. Therefore, the present study aimed to investigate the effect of BBR on palmitic acid (PA)-induced podocyte apoptosis and its specific mechanism using an in vitro model. Cell death was measured using the Cell Counting Kit-8 colorimetric assay. Cell apoptotic rate was assessed by flow cytometry. The expression of endoplasmic reticulum (ER) stress- and apoptosis-related proteins was detected by western blotting or immunofluorescence. Reactive oxygen species (ROS) were evaluated by 2 ' ,7 ' -dichlorofluorescein diacetate fluorescence staining. The results of the present study revealed that BBR treatment decreased PA-induced podocyte apoptosis. In addition, 4-phenylbutyric acid significantly reduced PA-induced cell apoptosis and the expression of ER stress-related proteins, which indicated that ER stress was involved in PA-induced podocyte apoptosis. In addition, N-acetylcysteine inhibited PA-induced excessive ROS production, ER stress and cell apoptosis of podocytes. BBR also significantly reduced PA-induced ROS production and ER stress in podocytes. These results suggested that PA mediated podocyte apoptosis through enhancing ER stress and the production of ROS. In conclusion, BBR may protect against PA-induced podocyte apoptosis, and suppression of ROS-dependent ER stress may be the key mechanism underlying the protective effects of BBR.

Knowledge Graph

Similar Paper

Berberine alleviates palmitic acid‑induced podocyte apoptosis by reducing reactive oxygen species‑mediated endoplasmic reticulum stress
Molecular Medicine Reports 2020.0
Protective effects of berberine on various kidney diseases: Emphasis on the promising effects and the underlined molecular mechanisms
Life Sciences 2022.0
Berberine Inhibits Nod-Like Receptor Family Pyrin Domain Containing 3 Inflammasome Activation and Pyroptosis in Nonalcoholic Steatohepatitis via the ROS/TXNIP Axis
Frontiers in Pharmacology 2020.0
Protective Mechanism of Berberine on Human Retinal Pigment Epithelial Cells against Apoptosis Induced by Hydrogen Peroxide via the Stimulation of Autophagy
Oxidative Medicine and Cellular Longevity 2021.0
A Mechanistic Review on How Berberine Use Combats Diabetes and Related Complications: Molecular, Cellular, and Metabolic Effects
Pharmaceuticals 2023.0
Protective effects of berberine against MPTP-induced dopaminergic neuron injury through promoting autophagy in mice
Food & Function 2021.0
Berberine protects against neomycin-induced ototoxicity by reducing ROS generation and activating the PI3K/AKT pathway
Neuroscience Letters 2023.0
Generation of reactive oxygen species by a novel berberine–bile acid analog mediates apoptosis in hepatocarcinoma SMMC-7721 cells
Biochemical and Biophysical Research Communications 2013.0
Berberine Induces G1 Arrest and Apoptosis in Human Glioblastoma T98G Cells through Mitochondrial/Caspases Pathway
Biological and Pharmaceutical Bulletin 2008.0
Berberine Induces Mitophagy through Adenosine Monophosphate-Activated Protein Kinase and Ameliorates Mitochondrial Dysfunction in PINK1 Knockout Mouse Embryonic Fibroblasts
International Journal of Molecular Sciences 2023.0