New role for crinamine as a potent, safe and selective inhibitor of human monoamine oxidase B: In vitro and in silico pharmacology and modeling

Journal of Ethnopharmacology
2020.0

Abstract

Ethnopharmacological relevance: The development of selective inhibitors of monoamine oxidase B (MAO-B) has been essential in treating Parkinson's disease. However, the apparent hepatotoxicity and drug-drug interactions of current inhibitors accentuate the need for the development of novel pharmacotherapies. Crossyne guttata (L.) D. & U. Müll-Doblies is used frequently by Rastafarian bush doctors to treat alcoholism, a disorder which is also accentuated by MAO. Objective: The study sought to isolate, identify and characterise the biologically active constituents of C. guttata based on their ability to inhibit the MAO enzymes. Materials and methods: Column chromatography was used to isolate the biologically active alkaloids of C. guttata. The ability of the alkaloids to inhibit the biotransformation of 4-aminoantipyrine by the MAO enzymes was evaluated in vitro. In silico docking was conducted using AutoDock Vina server while the pharmacokinetic properties of the compounds were evaluated using SwissADME. Results: Chromatographic separation of an ethanolic fraction of C. guttata yielded the alkaloids crinamine 1 and epibuphanisine 2. 1 and 2 along with structurally related alkaloids haemanthamine 3 and haemanthidine 4 were evaluated for their ability to inhibit the action of isozymes of MAO in vitro. Alkaloids effected submicromolar IC50 values against MAO-B, the most potent of which being crinamine 1 (0.014 μM) > haemanthidine 4 (0.017 μM) > epibuphanisine 2 (0.039 μM) > haemanthamine 3 (0.112 μM). Binding energies of the alkaloids correlated well with their inhibitory potential with crinamine displaying the best binding efficacy and binding energy score with MAO-B. Discussion and conclusion: Crinamine and epibuphanisine exhibited potent and selective inhibitory activity towards MAO-B. After comprehensive in silico investigations encompassing robust molecular docking analysis, the drug-like attributes and safety of the alkaloids suggest the crinamine is a potentially safe drug for human application. © 2019 Elsevier B.V.

Knowledge Graph

Similar Paper