Stachydrine is a main active component of Leonurus japonicus (Chinese motherwort), which has traditionally been used to promote postpartum recovery and alleviate myocardial and cerebral ischemic injuries due to its proangiogenic effect. Our prior study demonstrated that stachydrine increased angiogenesis in zebrafish embryos, but its pro-angiogenic effect and underlying mechanisms on human umbilical vein endothelial cells (HUVECs) remain largely unknown. In the present study, we further investigated the role of stachydrine in sunitinib-injured HUVECs and its potential molecular mechanisms. The results showed that stachydrine exhibited a protective effect on sunitinib-injured HUVECs and significantly promoted their proliferation, migration, and tube formation, all central events of angiogenesis. In addition, stachydrine inhibited apoptosis and ROS production in sunitinib-injured HUVECs. Furthermore, our findings illustrated for the first time that stachydrine's molecular mechanisms for promoting angiogenesis might correlate with activation of the VEGFR2/MEK/ERK and inhibition of the mitochondrial-mediated apoptosis signaling pathway.