The mechanism of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) to scavenge DPPH radical is clarified by density functional theory (DFT) calculations. It is revealed that H-atom-abstraction rather than electron-transfer reaction is involved in the radical-scavenging process of edaravone, and H-atom at position 4 is readily to be abstracted. The C-H bond dissociation enthalpy (BDE) of edaravone is higher than the O-H BDE of alpha-tocopherol, accounting for the activity difference between the two antioxidants. As substituents have little influence on the C-H BDE, 2-pyrazolin-5-one is recognized as the active center for edaravone.