Synthesis and biological activity of 2-Carbomethoxy-3-catechol-8-azabicyclo[3.2.1]octanes

Bioorganic & Medicinal Chemistry Letters
2003.0

Abstract

Cocaine inhibits the dopamine transporter and the consequent elevation of dopamine is thought to contribute to the addictive properties of cocaine. Tropane analogues of cocaine, targeted to the dopamine transporter (DAT), are a significant focus of drug design for cocaine addiction medications. Herein, we report the function of the ortho hydroxy substituents in dopamine with respect to the azabicyclo[3.2.1]octane skeleton. The introduction of the o-dihydroxyl functionality led to reduced binding potency at monoamine transporters, rather than enhanced interaction with the DAT. It is therefore likely that the binding site for these compounds on the DAT is not the same as that for dopamine. Notwithstanding the moderate potency of the free catechols (>100 nM), 7 manifested stimulant activity with a duration of effect that exceeded 4 h in a rat locomotor activity assay. Compound 10, a diacetoxy prodrug for 7, substituted fully for cocaine in a rat drug-discrimination paradigm and is now undergoing further investigation as a potential medication for cocaine abuse.

Knowledge Graph

Similar Paper

Synthesis and biological activity of 2-Carbomethoxy-3-catechol-8-azabicyclo[3.2.1]octanes
Bioorganic & Medicinal Chemistry Letters 2003.0
Synthesis of 8-thiabicyclo[3.2.1]oct-2-enes and their binding affinity for the dopamine and serotonin transporters
Bioorganic & Medicinal Chemistry Letters 2004.0
Synthesis and Pharmacology of Site Specific Cocaine Abuse Treatment Agents:  8-Substituted Isotropane (3-Azabicyclo[3.2.1]octane) Dopamine Uptake Inhibitors
Journal of Medicinal Chemistry 2003.0
The synthesis and biological evaluation of 2-(3-methyl or 3-phenylisoxazol-5-yl)-3-aryl-8-thiabicyclo[3.2.1]octanes
Bioorganic & Medicinal Chemistry Letters 2011.0
Synthesis and Biological Evaluation of 2-Substituted 3β-Tolyltropane Derivatives at Dopamine, Serotonin, and Norepinephrine Transporters
Journal of Medicinal Chemistry 2002.0
Synthesis and dopamine transporter binding affinities of 3α-Benzyl-8-(diarylmethoxyethyl)-8-azabicyclo[3.2.1]octanes
Bioorganic & Medicinal Chemistry Letters 2002.0
Synthesis and Dopamine Transporter Affinity of 2-(Methoxycarbonyl)-9-methyl-3-phenyl-9-azabicyclo[3.3.1]nonane Derivatives
Journal of Medicinal Chemistry 1996.0
Novel 3.alpha.-(Diphenylmethoxy)tropane Analogs: Potent Dopamine Uptake Inhibitors without Cocaine-like Behavioral Profiles
Journal of Medicinal Chemistry 1994.0
Synthesis and Pharmacology of Site-Specific Cocaine Abuse Treatment Agents:  2-Substituted-6-amino-5-phenylbicyclo[2.2.2]octanes
Journal of Medicinal Chemistry 1999.0
Structure−Activity Relationship Studies on a Novel Series of (S)-2β-Substituted 3α-[Bis(4-fluoro- or 4-chlorophenyl)methoxy]tropane Analogues for in Vivo Investigation
Journal of Medicinal Chemistry 2006.0