New synthesis of N-[4-[[(2-amino-4(3H)-oxopyrido[3,2-d]pyrimidin-6-yl)methyl]amino]benzoyl]-L-glutamic acid (8-deazafolic acid) and the preparation of some 5,6,7,8-tetrahydro derivatives

Journal of Medicinal Chemistry
1981.0

Abstract

Previously, 8-deazafolic acid (17) was shown to be a potent inhibitor of the folate-dependent bacteria, Streptococcus faecium (ATCC 8043) and Lactobacillus casei (ATCC 7469), and to have activity against lymphoid leukemia L1210 in mice. To examine the 5,6,7,8-tetrahydro derivatives, a new synthesis of 17 was developed from 8-deaza-2,4-dichloro-6-methylpteridine. Treatment of the latter with aqueous base gave the corresponding pteridin-4(3H)-one, which was aminated with ammonia to give 8-deaza-6-methylpterin (9). Bromination of 9 gave mainly 8-deaza-6-(tribromomethyl)pterin, which on reaction with p-aminobenzoyl-L-glutamic acid resulted in the formation of the 9-oxo derivative of 17. In contrast, bromination of the 2-acetyl derivative of 9 gave mainly the corresponding 6-(bromomethyl)pterin, which was converted to 17 in 23% yield (from 9). Hydrogenation of 17 at atmospheric pressure and room temperature was unsuccessful either in a basic medium or formic acid. In trifluoroacetic acid, overreduction occurred to give a mixture containing 8-deaza-5,6,7,8-tetrahydro-6-methylpterin and the 5,6,7,8-tetrahydro derivative of 17. The latter was characterized by conversion to the methenyl analogue 21, which was also prepared by hydrogenation of the 10-formyl derivative of 17. Treatment of 21 with hydroxide gave 8-deaza-10-formyl-5,6,7,8-tetrahydrofolic acid. Compound 21 showed cytotoxicity to cultured H.Ep.-2 cells and was tested as an inhibitor of bovine dihydrofolic reductase. Lineweaver-Burk analysis indicated inhibition competitive with dihydrofolate.

Knowledge Graph

Similar Paper

New synthesis of N-[4-[[(2-amino-4(3H)-oxopyrido[3,2-d]pyrimidin-6-yl)methyl]amino]benzoyl]-L-glutamic acid (8-deazafolic acid) and the preparation of some 5,6,7,8-tetrahydro derivatives
Journal of Medicinal Chemistry 1981.0
Synthesis and biological evaluation of 8-deazahomofolic acid and its tetrahydro derivative
Journal of Medicinal Chemistry 1988.0
Synthesis and antifolate properties of 5,10-methylenetetrahydro-8,10-dideazaminopterin
Journal of Medicinal Chemistry 1986.0
Synthesis and biological evaluation of N.alpha.-(5-deaza-5,6,7,8-tetrahydropteroyl)-L-ornithine
Journal of Medicinal Chemistry 1992.0
Novel 8-deaza-5,6,7,8-tetrahydroaminopterin derivatives as dihydrofolate inhibitor: Design, synthesis and antifolate activity
European Journal of Medicinal Chemistry 2009.0
Folate analogs. 31. Synthesis of the reduced derivatives of 11-deazahomofolic acid, 10-methyl-11-deazahomofolic acid, and their evaluation as inhibitors of glycinamide ribonucleotide formyltransferase
Journal of Medicinal Chemistry 1989.0
Synthesis and antifolate activity of 5-methyl-5,10-dideaza analogs of aminopterin and folic acid and an alternative synthesis of 5,10-dideazatetrahydrofolic acid, a potent inhibitor of glycinamide ribonucleotide formyltransferase
Journal of Medicinal Chemistry 1988.0
Synthesis and antitumor activity of 5-deaza-5,6,7,8-tetrahydrofolic acid and its N10-substituted analogs
Journal of Medicinal Chemistry 1989.0
Synthesis and antifolate properties of 10-alkyl-8,10-dideazaminopterins
Journal of Medicinal Chemistry 1984.0
Syntheses and antifolate activity of 5-methyl-5-deaza analogs of aminopterin, methotrexate, folic acid, and N10-methylfolic acid
Journal of Medicinal Chemistry 1986.0