Use of adenine nucleotide derivatives to assess the potential of exo-active-site-directed reagents as species- or isozyme-specific enzyme inactivators. 5. Interactions of adenosine 5'-triphosphate derivatives with rat pyruvate kinases, Escherichia coli thymidine kinase, and yeast and rat hexokinases

Journal of Medicinal Chemistry
1982.0

Abstract

Adenosine 5'-triphosphate (ATP) derivatives of the types N6-R-ATP [R = (CH2)nNHCOCH2I, (CH2)nNHCO-(CH2)mNHCOCH2I, or (CH2)nCON(Me)(CH2)mN(Me)CO(CH2)nNHCOCH2I], N6-Me-N6-R-ATP [R = (CH2)nN-(Me)CO(CH2)mNHCOCH2I], and 8-R-ATP [R = NM(CH2)nNHCOCH2I] with 5--19 spacer atoms between N6 or C-8 and iodine have been evaluated as potential exo-ATP-site-directed reagents for phosphokinases. Substrate and inhibitor properties indicated that the compounds possessed affinity for the ATP sites of the muscle (M), kidney (K), and liver (L) isozymes of rat pyruvate kinase (PK), of E. coli thymidine kinase (TK), and of yeast hexokinase (HK) and rat KH I, II, and III isozymes. Tests for time-dependent loss of enzyme activity (inactivation) were performed under conditions in which a large proportion of each phosphokinase was present as an enzyme-inhibitor complex. No ATP-site-directed inactivations resulted when the M, L, or K isozymes of PK were exposed for 8 h, 22 degrees C, to 5 mM levels of 18 ATP derivatives or 6 analogous ADP derivatives or when yeast HK or rat KH I, II, or III was exposed for 6 h, 22 degrees C, to 5 mM levels of 28 ATP derivatives. Escherichia coli TK was inactivated by 6 of 25 ATP derivatives tested at 10 mM, 6 h, 0 degrees C; inactivation was slowed by MgATP in the case of N6-CH3-N6-R-ATP [R = (CH2)4N(CH3)CO(CH2)5NHCOCH2I]. Only 1% of 298 enzyme-inhibitor combinations exhibited ATP-site-directed inactivation, signifying that few suitably positioned and sufficiently reactive nucleophilic groups were present near the enzymic ATP sites. Studies have now shown that exo-active-site-directed reagents can act as isozyme- or species-selective enzyme inhibitors. The present survey indicates that in many cases such reagents may be difficult of access when data are not available regarding structural or physicochemical features of the target enzyme adjacent to its catalytic site.

Knowledge Graph

Similar Paper

Use of adenine nucleotide derivatives to assess the potential of exo-active-site-directed reagents as species- or isozyme-specific enzyme inactivators. 5. Interactions of adenosine 5'-triphosphate derivatives with rat pyruvate kinases, Escherichia coli thymidine kinase, and yeast and rat hexokinases
Journal of Medicinal Chemistry 1982.0
Use of adenine nucleotide derivatives to assess the potential of exo-active-site-directed reagents as species- or isozyme-specific enzyme inactivators. 4. Interactions of adenosine 5'-triphosphate derivatives with adenylate kinases from Escherichia coli and rat tissues
Journal of Medicinal Chemistry 1982.0
Species- or isozyme-specific enzyme inhibitors. 9. Selective effects in inhibitions of rat pyruvate kinase isozymes by adenosine 5'-diphosphate derivatives
Journal of Medicinal Chemistry 1982.0
Design of species- or isozyme-specific enzyme inhibitors. 3. Species and isozymic differences between mammalian and bacterial adenylate kinases in substituent tolerance in an enzyme-substrate complex
Journal of Medicinal Chemistry 1979.0
Isozyme-specific enzyme inhibitors. 10. Adenosine 5'-triphosphate derivatives as substrates or inhibitors of methionine adenosyltransferases of rat normal and hepatoma tissues
Journal of Medicinal Chemistry 1986.0
Species- or isozyme-specific enzyme inhibitors. 4. Design of a two-site inhibitor of adenylate kinase with isozyme selectivity
Journal of Medicinal Chemistry 1982.0
Species- or isozyme-specific enzyme inhibitors. 7. Selective effects in inhibitions of rat adenylate kinase isozymes by adenosine 5'-phosphate derivatives
Journal of Medicinal Chemistry 1982.0
Species- or isozyme-selective enzyme inhibitors. 8. Synthesis of disubstituted two-substrate condensation products as inhibitors of rat adenylate kinases
Journal of Medicinal Chemistry 1982.0
Species- and isozyme-specific enzyme inhibitors. 6. Synthesis and evaluation of two-substrate condensation products as inhibitors of hexokinases and thymidine kinases
Journal of Medicinal Chemistry 1982.0
Synthesis and Biological Testing of Purine Derivatives as Potential ATP-Competitive Kinase Inhibitors
Journal of Medicinal Chemistry 2005.0