Methotrexate analogs. 19. Replacement of the glutamate side-chain in classical antifolates by L-homocysteic acid and L-cysteic acid: effect on enzyme inhibition and antitumor activity

Journal of Medicinal Chemistry
1984.0

Abstract

Methotrexate (MTX) and aminopterin (AMT) analogues containing L-homocysteic acid or L-cysteic acid in place of L-glutamic acid were synthesized and tested as inhibitors of dihydrofolate reductase from L1210 cells and folyl polyglutamate synthetase from mouse liver. The ID50 against dihydrofolate reductase was comparable for the MTX and AMT analogues (0.04-0.07 microM), whereas the ID50 against folyl polyglutamate synthetase was 3- to 4-fold lower for the AMT analogues (40-60 microM) than for the MTX analogues (100-200 microM). Thus, N10-substitution has a greater effect on binding to folyl polyglutamate synthetase than dihydrofolate reductase. The cytotoxicity of these compounds was assayed in vitro against L1210 cells, and the AMT analogues again proved more potent (ID50 = 0.03-0.05 microM) than the MTX analogues (ID50 = 0.1-0.4 microM). A similarly increased potency was observed for the AMT analogues against L1210 leukemia in vivo. Though differential cell uptake cannot be ruled out as the basis of increased potency, it is possible that part of the activity of the AMT analogues involves interference with the intracellular polyglutamation of reduced folate cofactors, i.e., that they are "self-potentiating antifolates". Of the four compounds reported, the most active was N-(4-amino-4- deoxypteroyl )-L-homocysteic acid, which produced a 138% increase in life span (ILS) in L1210 leukemic mice when given on a modified bid X 10 schedule at a dose of 2 mg/kg. A comparable ILS was obtained with AMT itself at 0.24 mg/kg. Thus, replacement of gamma-CO2H by gamma-SO3H in the side chain does not decrease therapeutic effect. However, a higher dose is required, presumably to offset pharmacological differences reflecting the inability of the sulfonate group to be polyglutamated .

Knowledge Graph

Similar Paper

Methotrexate analogs. 19. Replacement of the glutamate side-chain in classical antifolates by L-homocysteic acid and L-cysteic acid: effect on enzyme inhibition and antitumor activity
Journal of Medicinal Chemistry 1984.0
Methotrexate analogs. 34. Replacement of the glutamate moiety in methotrexate and aminopterin by long-chain 2-aminoalkanedioic acids
Journal of Medicinal Chemistry 1988.0
Methotrexate analogs. 20. Replacement of glutamate by longer-chain amino diacids: Effects on dihydrofolate reductase inhibition, cytotoxicity, and in vivo antitumor activity
Journal of Medicinal Chemistry 1983.0
Methotrexate analogs. 26. Inhibition of dihydrofolate reductase and folylpolyglutamate synthetase activity and in vitro tumor cell growth by methotrexate and aminopterin analogs containing a basic amino acid side chain
Journal of Medicinal Chemistry 1986.0
Methotrexate analogs. 31. Meta and ortho isomers of aminopterin, compounds with a double bond in the side chain, and a novel analog modified at the .alpha.-carbon: chemical and in vitro biological studies
Journal of Medicinal Chemistry 1988.0
Folate analogs. 34. Synthesis and antitumor activity of non-polyglutamylatable inhibitors of dihydrofolate reductase
Journal of Medicinal Chemistry 1991.0
Syntheses and evaluation as antifolates of MTX analogs derived from 2,.omega.-diaminoalkanoic acids
Journal of Medicinal Chemistry 1985.0
Synthesis and biological activity of the 2-desamino and 2-desamino-2-methyl analogs of aminopterin and methotrexate
Journal of Medicinal Chemistry 1991.0
Analogs of methotrexate and aminopterin with .gamma.-methylene and .gamma.-cyano substitution of the glutamate side chain: synthesis and in vitro biological activity. 40
Journal of Medicinal Chemistry 1991.0
Methotrexate analogs. 14. Synthesis of new .gamma.-substituted derivatives as dihydrofolate reductase inhibitors and potential anticancer agents
Journal of Medicinal Chemistry 1981.0