Improved synthesis of 2'-deoxyformycin A and studies of its in vitro activity against mouse lymphoma of T-cell origin

Journal of Medicinal Chemistry
1985.0

Abstract

7-Amino-3-(2'-deoxy-beta-D-ribofuranosyl)pyrazolo[4,3-d]pyrimidine (2'-deoxyformycin A) was synthesized from formycin A by a sequence consisting of (i) 3',5'-cyclosilylation with 1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane, (ii) 2'-acylation with phenoxythiocarbonyl chloride and 4-(N,N-dimethylamino)pyridine, (iii) N-trimethylsilylation with hexamethyldisilazane, (iv) reduction of the 2'-O-phenoxythiocarbonyl group with tri-n-butyltin hydride, and (v) desilylation with tetra-n-butylammonium fluoride. 2'-Deoxyformycin A was a potent inhibitor of the in vitro growth of S49 lymphoma, a murine tumor of T-cell origin. The IC50 of 2'-deoxyformycin A against S49 cells was 10-15 microM, whereas that of 2'-deoxyadenosine (dAdo) under the same conditions (72-h incubation in medium containing heat-inactivated horse serum) was 180 microM. In the presence of 10 microM erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) to block intracellular adenosine deaminase (ADA) activity, 2'-deoxyformycin A and dAdo both gave IC50's of 5-10 microM. When assayed against a mutant S49 subline lacking adenosine kinase (AK) or a subline with a combined deletion of AK and deoxycytidine kinase (dCK), 2'-deoxyformycin A in combination with 10 microM EHNA was inactive at concentrations of up to 50 microM. Similar lack of activity against kinase-deficient cells was shown by formycin A. Thus, phosphorylation of 2'-deoxyformycin A appears to be required for biological activity and is probably catalyzed by AK rather than dCK. 2'-Deoxyformycin A and related 2'-deoxyribo-C-nucleoside analogues of the purine type may be of interest as potential T-cell specific cytotoxic agents.

Knowledge Graph

Similar Paper

Improved synthesis of 2'-deoxyformycin A and studies of its in vitro activity against mouse lymphoma of T-cell origin
Journal of Medicinal Chemistry 1985.0
2-Fluoroformycin and 2-aminoformycin. Synthesis and biological activity
Journal of Medicinal Chemistry 1985.0
Biological activity and a modified synthesis of 8-amino-3-.beta.-D-ribofuranosyl-1,2,4-triazolo[4,3-.alpha.]pyrazine, an isomer of formycin
Journal of Medicinal Chemistry 1984.0
Synthesis and biochemical properties of 8-amino-6-fluoro-9-.beta.-D-ribofuranosyl-9H-purine
Journal of Medicinal Chemistry 1986.0
Synthesis and antitumor activity of certain 3-.beta.-D-ribofuranosyl-1,2,4-triazolo[3,4-f]-1,2,4-triazines related to formycin prepared via ring closure of a 1,2,4-triazine precursor
Journal of Medicinal Chemistry 1986.0
Nucleic acid related compounds. 51. Synthesis and biological properties of sugar-modified analogs of the nucleoside antibiotics tubercidin, toyocamycin, sangivamycin, and formycin
Journal of Medicinal Chemistry 1987.0
Nucleosides and nucleotides. 95. Improved synthesis of 1-(2-azido-2-deoxy-.beta.-D-arabinofuranosyl)cytosine (Cytarazid) and -thymine. Inhibitory spectrum of Cytarazid on the growth of various human tumor cells in vitro
Journal of Medicinal Chemistry 1991.0
Synthesis, antiretrovirus effects and phosphorylation kinetics of 3'-isocyano-3'-deoxythymidine and 3'-isocyano-2',3'-dideoxyuridine
Journal of Medicinal Chemistry 1990.0
Improved synthesis and antitumor activity of 1-deazaadenosine
Journal of Medicinal Chemistry 1987.0
Biosynthesis of 2'-deoxycoformycin: evidence for ring expansion of the adenine moiety of adenosine to a tetrahydroimidazo[4,5-d][1,3]diazepine system
Biochemistry 1987.0