Inhibition of phenylethanolamine N-methyltransferase (PNMT) by aromatic hydroxy-substituted 1,2,3,4-tetrahydroisoquinolines. Further studies on the hydrophilic pocket of the aromatic ring binding region of the active site

Journal of Medicinal Chemistry
1987.0

Abstract

In a continuation of studies directed toward characterizing the hydrophilic pocket within the aromatic ring binding region of the active site of phenylethanolamine N-methyltransferase (PNMT), 5-, 6-, 7-, and 8-hydroxy-1,2,3,4-tetrahydroisoquinoline were prepared and evaluated as substrates and inhibitors of PNMT. In order to discern the necessity of an acidic hydrogen for interaction at this pocket the corresponding methyl ethers were also evaluated. The enhanced affinity of 7-hydroxy-1,2,3,4-tetrahydroisoquinoline (16) versus tetrahydroisoquinoline (13) itself indicates that a hydrophilic pocket exists off of carbon C7 in bound tetrahydroisoquinolines. The diminished affinity of the corresponding methyl ether is consistent with a requirement for the acidic hydrogen of 16 for interaction of the aromatic hydroxyl at this site. From the relative activities of the other regioisomeric aromatic hydroxyl-substituted tetrahydroisoquinolines, their corresponding methyl ethers, and 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, it appears that the hydrophilic pocket is spatially compact with respect to bound tetrahydroisoquinolines and is surrounded by larger areas of lipophilic character. To allow a comparison of the results of this study with previous data on bound beta-phenylethylamines, the methyl ethers of 5-, 6-, 7-, and 8-hydroxy-exo-2-aminobenzonorbornene and of 5- and 6-hydroxy-anti-9-aminobenzonorbornene were also evaluated for their activity as substrates and inhibitors for PNMT. The results of this study are in agreement with previous findings for bound beta-phenylethylamines and support the conclusion that the natural substrate for PNMT, norepinephrine, has a different active site binding orientation than most known substrates and competitive inhibitors of the enzyme.

Knowledge Graph

Similar Paper

Inhibition of phenylethanolamine N-methyltransferase (PNMT) by aromatic hydroxy-substituted 1,2,3,4-tetrahydroisoquinolines. Further studies on the hydrophilic pocket of the aromatic ring binding region of the active site
Journal of Medicinal Chemistry 1987.0
3,7-Disubstituted-1,2,3,4-tetrahydroisoquinolines Display Remarkable Potency and Selectivity as Inhibitors of Phenylethanolamine N-Methyltransferase versus the α<sub>2</sub>-Adrenoceptor<sup>1a</sup>
Journal of Medicinal Chemistry 1999.0
Conformational requirements of substrates for activity with phenylethanolamine N-methyltransferase
Journal of Medicinal Chemistry 1988.0
Exploring the active site of phenylethanolamine N-methyltransferase with 1,2,3,4-tetrahydrobenz[h]isoquinoline inhibitors☆
Bioorganic &amp; Medicinal Chemistry 2007.0
Synthesis and evaluation of 3-substituted analogs of 1,2,3,4-tetrahydroisoquinoline as inhibitors of phenylethanolamine N-methyltransferase
Journal of Medicinal Chemistry 1988.0
Conformational preference for the binding of biaryl substrates and inhibitors to the active site of phenylethanolamine N-methyltransferase (PNMT)
Journal of Medicinal Chemistry 1988.0
Comparison of the Binding of 3-Fluoromethyl-7-sulfonyl-1,2,3,4-tetrahydroisoquinolines with Their Isosteric Sulfonamides to the Active Site of PhenylethanolamineN-Methyltransferase
Journal of Medicinal Chemistry 2006.0
Stereochemical aspects of phenylethanolamine analogs as substrates of phenylethanolamine N-methyltransferase
Journal of Medicinal Chemistry 1988.0
Directional probes of the hydrophobic component of the aromatic ring binding site of norepinephrine N-methyltransferase
Journal of Medicinal Chemistry 1982.0
Importance of the aromatic ring in adrenergic amines. 7. Comparison of the stereoselectivity of norepinephrine N-methyltransferase for aromatics. Nonaromatic substrates and inhibitors
Journal of Medicinal Chemistry 1982.0