2,4-Diamino-5-benzylpyrimidines as antibacterial agents. 7. Analysis of the effect of 3,5-dialkyl substituent size and shape on binding to four different dihydrofolate reductase enzymes

Journal of Medicinal Chemistry
1987.0

Abstract

A group of trimethoprim (TMP) analogues containing 3,5-dialkyl(or halo)-4-alkoxy, -hydroxy, or -amino substitution were analyzed in terms of their inhibitory activities against four dihydrofolate reductase (DHFR) isozymes. Although selectivities were lower than with TMP, the activities against vertebrate DHFR were usually at least 2 orders of magnitude less than against enzymes from microbial sources. However, the profiles of activity were remarkably similar for rat, Neisseria gonorrhoeae, and Plasmodium berghei enzymes in all three series, although somewhat different for Escherichia coli DHFR, leading to the conclusion that the hydrophobic pockets are similar for the first three isozymes. Optimal substitution was reached with 3,5-di-n-propyl or 3-ethyl-5-n-propyl groups. Branching of chains at the alpha-carbon, which resulted in increased substituent thickness, was detrimental to E. coli DHFR inhibition in particular. MR is an inadequate parameter for use in correlating such substituent effects. Conformational changes of the more bulky inhibitors can be invoked to explain some differences in inhibitory pattern. Although log P explains simple substituent effects with the vertebrate DHFRs very well, it is insufficient in the more complex cases described here, where shape is clearly involved as well. Solvent-accessible surface areas were measured for TMP in E. coli and chicken DHFRs, where the coordinates are now known. The environment is more hydrophobic in the latter case; this can also be postulated for rat DHFR, which has a very similar activity profile. As with the mammalian isozymes, N. gonorrhoeae DHFR contains an active site phenylalanine replacing Leu-28 of E. coli DHFR, thus creating a more hydrophobic pocket. A similar replacement may also occur in the P.berghei isozyme. Selectivity for bacterial DHFR is dependent on the nature of the 4-substituent, being low for polar 4-hydroxy compounds but high for polar 4-amino analogues, possibly as a result of solvation differences. With complex substituents, the environment of each atom in the active site must be taken into account to adequately explain structure-activity relationships.

Knowledge Graph

Similar Paper

2,4-Diamino-5-benzylpyrimidines as antibacterial agents. 7. Analysis of the effect of 3,5-dialkyl substituent size and shape on binding to four different dihydrofolate reductase enzymes
Journal of Medicinal Chemistry 1987.0
Quantitative structure-activity relationships for the inhibition of Escherichia coli dihydrofolate reductase by 5-(substituted benzyl)-2,4-diaminopyrimidines
Journal of Medicinal Chemistry 1988.0
Optimization of hydrophobic and hydrophilic substituent interactions of 2,4-diamino-5-(substituted-benzyl)pyrimidines with dihydrofolate reductase
Journal of Medicinal Chemistry 1991.0
2,4-Diamino-5-benzylpyrimidines and analogs as antibacterial agents. 12. 1,2-Dihydroquinolylmethyl analogs with high activity and specificity for bacterial dihydrofolate reductase
Journal of Medicinal Chemistry 1989.0
2,4-Diamino-5-benzylpyrimidines as antibacterial agents. 8. The 3,4,5-triethyl isostere of trimethoprim. A study of specificity
Journal of Medicinal Chemistry 1987.0
A comparison of the inhibitory action of 5-(substituted-benzyl)-2,4-diaminopyrimidines on dihydrofolate reductase from chicken liver with that from bovine liver
Journal of Medicinal Chemistry 1982.0
Inhibition of dihydrofolate reductase: structure-activity correlations of 2,4-diamino-5-benzylpyrimidines based upon molecular shape analysis
Journal of Medicinal Chemistry 1981.0
Receptor-based design of novel dihydrofolate reductase inhibitors: benzimidazole and indole derivatives
Journal of Medicinal Chemistry 1991.0
2,4-Diamino-5-benzylpyrimidines and analogs as antibacterial agents. 5. 3',5'-Dimethoxy-4'-substituted-benzyl analogs of trimethoprim
Journal of Medicinal Chemistry 1981.0
2,4-Diamino-5-benzylpyrimidines as antibacterial agents. 14. 2,3-Dihydro-1-(2,4-diamino-5-pyrimidyl)-1H-indenes as conformationally restricted analogs of trimethoprim
Journal of Medicinal Chemistry 1991.0