Synthesis and pharmacological characterization of 1-phenyl-, 4-phenyl-, and 1-benzyl-1,2,3,4-tetrahydroisoquinolines as dopamine receptor ligands

Journal of Medicinal Chemistry
1988.0

Abstract

A series of 1-phenyl-, 4-phenyl-, and 1-benzyl-1,2,3,4-tetrahydroisoquinolines have been prepared as ring-contracted analogues of the prototypical D1 dopamine receptor antagonist SCH23390 [(R)-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H- 3-benzazepine]. The affinity and selectivity of these isoquinolines for D1 receptors was determined by three biochemical endpoints in membrane homogenates prepared from rat corpus striatum: the potency to complete for [3H]SCH23390 binding sites; the potency to compete for [3H]spiperone (a D2 receptor ligand) binding sites; and effects on dopamine-stimulated adenylate cyclase. Competitive binding measurements at D1 sites showed SCH23390 to possess the highest affinity, followed by 1-phenyl greater than 1-benzyl greater than 4-phenyl for the isoquinolines. These results were highly correlated with the ability of the test compounds to antagonize dopamine-stimulated adenylate cyclase (r = 0.98). None of the compounds alone stimulated cAMP formation at concentrations of 10 nM to 100 microM. D2 competition binding showed the 1-benzyl derivative to possess the highest affinity, followed by 4-phenyl greater than SCH23390 greater than 1-phenyl. The tertiary 1-phenyl derivative was more potent than the secondary 1-phenyl analogue in all assays. Interestingly, resolution and single-crystal X-ray analysis of the tertiary N-methyl-1-phenyltetrahydroisoquinoline showed the most active enantiomer to possess the S absolute configuration, in contrast to the benzazepine (R)-SCH23390.

Knowledge Graph

Similar Paper

Synthesis and pharmacological characterization of 1-phenyl-, 4-phenyl-, and 1-benzyl-1,2,3,4-tetrahydroisoquinolines as dopamine receptor ligands
Journal of Medicinal Chemistry 1988.0
Synthesis and dopaminergic activity of a series of new 1-aryl tetrahydroisoquinolines and 2-substituted 1-aryl-3-tetrahydrobenzazepines
Bioorganic Chemistry 2018.0
Tetrahydroisoquinolines as dopaminergic ligands: 1-Butyl-7-chloro-6-hydroxy-tetrahydroisoquinoline, a new compound with antidepressant-like activity in mice
Bioorganic & Medicinal Chemistry 2009.0
Absolute stereochemistry and dopaminergic activity of enantiomers of 2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine
Journal of Medicinal Chemistry 1982.0
Binding and Preliminary Evaluation of 5-Hydroxy- and 10-Hydroxy-2,3,12,12a-tetrahydro-1H-[1]benzoxepino[2,3,4-ij]isoquinolines as Dopamine Receptor Ligands
Journal of Medicinal Chemistry 2000.0
Specific dopamine D-1 and DA1 properties of 4-(mono- and -dihydroxyphenyl)-1,2,3,4-tetrahydroisoquinoline and its tetrahydrothieno[2,3c]pyridine analog
Journal of Medicinal Chemistry 1987.0
trans-2,3-Dihydroxy-6a,7,8,12b-tetrahydro-6H-chromeno[3,4-c]isoquinoline:  Synthesis, Resolution, and Preliminary Pharmacological Characterization of a New Dopamine D<sub>1</sub>Receptor Full Agonist
Journal of Medicinal Chemistry 2006.0
Dopaminergic isoquinolines with hexahydrocyclopenta[ ij ]-isoquinolines as D 2 -like selective ligands
European Journal of Medicinal Chemistry 2016.0
Analogues of doxanthrine reveal differences between the dopamine D1 receptor binding properties of chromanoisoquinolines and hexahydrobenzo[a]phenanthridines
European Journal of Medicinal Chemistry 2012.0
1-(2′-Bromobenzyl)-6,7-dihydroxy-N-methyl-tetrahydroisoquinoline and 1,2-Demethyl-nuciferine as Agonists in Human D<sub>2</sub> Dopamine Receptors
Journal of Natural Products 2020.0