Synthesis and biological evaluation of a series of 1,1-dichloro-2,2,3-triarylcyclopropanes as pure antiestrogens

Journal of Medicinal Chemistry
1991.0

Abstract

A series of 1,1-dichloro-2,2,3-triarylcyclopropanes (DTACs) was synthesized and evaluated as pure antiestrogens. Addition of 4-methoxy- or 4-(benzyloxy)phenyl Grignard reagents to p-methoxy, p-benzyloxy, or unsubstituted deoxybenzoins, followed by dehydration of the resulting carbinols produced a mixture of E and Z olefins, which were reacted with dichlorocarbene to give O-protected DTACs. The E and Z isomers were separated by fractional crystallization and the central or geminal phenyl ring was deprotected to provide phenolic DTACs. Alkylation with (N,N-dimethylamino)ethyl chloride yielded basic cyclopropanes. Two chlorodiarylindenes were isolated as thermolysis products of the DTACs, and one was converted to a phenol by hydrogenolysis. All DTACs and indenes were competitive inhibitors of [3H]estradiol binding in the immature rat uterine cytosol receptor assay, with relative binding affinities of 0.1-3.6% of estradiol. None of the new compounds were estrogenic in the 3-day immature mouse uterotrophic assay at doses up to 750 micrograms. In the 3-day immature mouse antiuterotrophic assay, five DTACs with either a methoxy (5a), benzyloxy (4d, 5c), or (dimethylamino)ethoxy (7a, 7b) central ring side chain produced significant decreases in uterine weight at doses up to 750 micrograms. One compound, (Z)-1,1-dichloro-2-[4-[2-(dimethylamino)ethoxy]-phenyl]-2-(4- methoxyphenyl)-3-phenylcyclopropane (7b), elicited a dose-dependent decrease in vivo comparable to MER 25. These same five compounds, as well as the lead compound Analog II, were active in vitro against the estrogen-dependent MCF-7 human breast tumor cell line in a dose-dependent fashion.

Knowledge Graph

Similar Paper

Synthesis and biological evaluation of a series of 1,1-dichloro-2,2,3-triarylcyclopropanes as pure antiestrogens
Journal of Medicinal Chemistry 1991.0
Molecular Structures and Conformational Studies of Triarylcyclopropyl and Related Nonsteroidal Anti-Estrogens
Journal of Medicinal Chemistry 1994.0
Tricyclic triarylethylene antiestrogens: dibenz[b,f]oxepins, dibenzo[b,f]thiepins, dibenzo[a,e]cyclooctenes, and dibenzo[b,f]thiocins
Journal of Medicinal Chemistry 1983.0
Antiestrogenically Active 1,1,2-Tris(4-hydroxyphenyl)alkenes without Basic Side Chain:  Synthesis and Biological Activity
Journal of Medicinal Chemistry 2003.0
Investigations on Estrogen Receptor Binding. The Estrogenic, Antiestrogenic, and Cytotoxic Properties of C2-Alkyl-Substituted 1,1-Bis(4-hydroxyphenyl)-2-phenylethenes
Journal of Medicinal Chemistry 2002.0
Catechol estrogens of the 1,1,2-triphenyl-1-butene type. Relationship between structure, estradiol receptor affinity, estrogenic and antiestrogenic properties, and mammary tumor inhibiting activities
Journal of Medicinal Chemistry 1986.0
Antiestrogens. 2. Structure-activity studies in a series of 3-aroyl-2-arylbenzo[b]thiophene derivatives leading to [6-hydroxy-2-(4-hydroxyphenyl)benzo[b]thien-3-yl]-[4-[2-(1-piperidinyl)ethoxy]phenyl]methanone hydrochloride (LY 156758), a remarkably effective estrogen antagonist with only minimal intrinsic estrogenicity
Journal of Medicinal Chemistry 1984.0
2-Alkyl-substituted 1,1-bis(4-acetoxyphenyl)-2-phenylethenes. Estrogen receptor affinity, estrogenic and antiestrogenic properties, and mammary tumor inhibiting activity
Journal of Medicinal Chemistry 1986.0
Evaluation of biological activity of new hemiesters of 17-hydroxy-16,17-secoestra-1,3,5(10)-triene-16-nitrile
Medicinal Chemistry Research 2011.0
Potential antiestrogens. Synthesis and evaluation of mammary tumor inhibiting activity of 1,2-dialkyl-1,2-bis(3'-hydroxyphenyl)ethanes
Journal of Medicinal Chemistry 1981.0