Kynurenic acid derivatives. Structure-activity relationships for excitatory amino acid antagonism and identification of potent and selective antagonists at the glycine site on the N-methyl-D-aspartate receptor

Journal of Medicinal Chemistry
1991.0

Abstract

Derivatives of the nonselective excitatory amino acid antagonist kynurenic acid (4-oxo-1,4-dihydroquinoline-2-carboxylic acid, 1) have been synthesized and evaluated for in vitro antagonist activity at the excitatory amino acid receptors sensitive to N-methyl-D-aspartic acid (NMDA), quisqualic acid (QUIS or AMPA), and kainic acid (KA). Introduction of substituents at the 5-, 7-, and 5,7-positions resulted in analogues having selective NMDA antagonist action, as a result of blockade of the glycine modulatory (or coagonist) site on the NMDA receptor. Regression analysis suggested a requirement for optimally sized, hydrophobic 5- and 7-substituents, with bulk tolerance being greater at the 5-position. Optimization led to the 5-iodo-7-chloro derivative (53), which is the most potent and selective glycine/NMDA antagonist to date (IC50 vs [3H]glycine binding, 32 nM; IC50's for other excitatory amino acid receptor sites, greater than 100 microM). Substitution of 1 at the 6-position resulted in compounds having selective non-NMDA antagonism and 8-substituted compounds were inactive at all receptors. The retention of glycine/NMDA antagonist activity in heterocyclic ring modified analogues, such as the oxanilide 69 and the 2-carboxybenzimidazole 70, suggests that the 4-oxo tautomer of 1 and its derivatives is required for activity. Structurally related quinoxaline-2,3-diones are also glycine/NMDA antagonists, but are not selective and are less potent than the 1 derivatives, and additionally show different structure-activity requirements for aromatic ring substitution. On the basis of these results, a model accounting for glycine receptor binding of the 1 derived antagonists is proposed, comprising (a) size-limited, hydrophobic binding of the benzene ring, (b) hydrogen-bond acceptance by the 4-oxo group, (c) hydrogen-bond donation by the 1-amino group, and (d) a Coulombic attraction of the 2-carboxylate. The model can also account for the binding of quinoxaline-2,3-diones, quinoxalic acids, and 2-carboxybenzimidazoles.

Knowledge Graph

Similar Paper

Kynurenic acid derivatives. Structure-activity relationships for excitatory amino acid antagonism and identification of potent and selective antagonists at the glycine site on the N-methyl-D-aspartate receptor
Journal of Medicinal Chemistry 1991.0
Structure-activity relationships of a series of glycine antagonists related to 5,7-dichlorokynurenic acid and 3-(2-carboxy-6-chloroindol-3-yl)acetic acid
Bioorganic & Medicinal Chemistry Letters 1993.0
2-Carboxytetrahydroquinolines. Conformational and stereochemical requirements for antagonism of the glycine site on the N-methyl-D-aspartate (NMDA) receptor
Journal of Medicinal Chemistry 1992.0
4-[(Carboxymethyl)oxy]- and 4-[(carboxymethyl)amino]-5,7-dichloroquinoline-2-carboxylic acid: new antagonists of the strychnine-insensitive glycine binding site on the N-methyl-D-aspartate (NMDA) receptor complex
Journal of Medicinal Chemistry 1990.0
Amino acid bioisosteres: design of 2-quinolone derivatives as glycine-site N-methyl-D-aspartate receptor antagonists
Bioorganic & Medicinal Chemistry Letters 1993.0
3-Phenyl-4-hydroxyquinolin-2(1H)-ones: potent and selective antagonists at the strychnine-insensitive glycine site on the N-methyl-D-aspartate receptor complex
Journal of Medicinal Chemistry 1992.0
Tricyclic Quinoxalinediones: 5,6-Dihydro-1H-pyrrolo[1,2,3-de]quinoxaline-2,3-diones and 6,7-Dihydro-1H,5H-pyrido[1,2,3-de]quinoxaline-2,3-diones as Potent Antagonists for the Glycine Binding Site of the NMDA Receptor
Journal of Medicinal Chemistry 1994.0
Structural Investigation of the 7-Chloro-3-hydroxy-1H-quinazoline-2,4-dione Scaffold to Obtain AMPA and Kainate Receptor Selective Antagonists. Synthesis, Pharmacological, and Molecular Modeling Studies
Journal of Medicinal Chemistry 2006.0
Drug Design, in Vitro Pharmacology, and Structure−Activity Relationships of 3-Acylamino-2-aminopropionic Acid Derivatives, a Novel Class of Partial Agonists at the Glycine Site on theN-Methyl-<scp>d</scp>-aspartate (NMDA) Receptor Complex
Journal of Medicinal Chemistry 2009.0
3-Hydroxy-1H-quinazoline-2,4-dione derivatives as new antagonists at ionotropic glutamate receptors: Molecular modeling and pharmacological studies
European Journal of Medicinal Chemistry 2012.0