1,3,8-Trisubstituted xanthines. Effects of substitution pattern upon adenosine receptor A1/A2 affinity

Journal of Medicinal Chemistry
1991.0

Abstract

A series of 11 8-substituted xanthines having three different substitution patterns on the 1- and 3-positions [pattern a (R1 = R3 = CH2CH2CH3), b (R1 = CH2CH2CH3, R3 = CH3), and c (R1 = CH3, R3 = CH2CH2CH3)] was prepared. These compounds were assessed for affinity and selectivity in binding to adenosine A1 and A2 receptors. Compounds with greatest affinity at the A1 receptor had the 1,3-substitution pattern a. With one exception, compounds with pattern a also exhibited the most potent binding at the A2 receptor; however, several compounds with pattern c were equipotent at the A2 receptor with those having pattern a. Additionally, the substituents on the 1- and 3-positions of these 8-substituted xanthines were equally important for determining maximum affinity to the A1 receptor, while the substituent at the 3-position is more important than the substituent at the 1-position for potency at the A2 receptor. As a result of this, it is possible to maximize selectivity for the A1 receptor by choice of the 1- and 3-position substituents. However, the R1/R3 substitution pattern required for maximum A1 selectivity is also dependent upon the substituent in the 8-position in a manner which is not fully understood.

Knowledge Graph

Similar Paper

1,3,8-Trisubstituted xanthines. Effects of substitution pattern upon adenosine receptor A1/A2 affinity
Journal of Medicinal Chemistry 1991.0
8-Polycycloalkyl-1,3-dipropylxanthines as potent and selective antagonists for A1-adenosine receptors
Journal of Medicinal Chemistry 1992.0
8-Azaxanthine Derivatives as Antagonists of Adenosine Receptors
Journal of Medicinal Chemistry 1994.0
Structure−Activity Relationships at Human and Rat A<sub>2B</sub> Adenosine Receptors of Xanthine Derivatives Substituted at the 1-, 3-, 7-, and 8-Positions
Journal of Medicinal Chemistry 2002.0
An explanation of the substituent effect of 1,3,8-trisubstituted xanthines on adenosine A1/A2 affinity.
Bioorganic &amp; Medicinal Chemistry Letters 1992.0
Synthesis of paraxanthine analogs (1,7-disubstituted xanthines) and other xanthines unsubstituted at the 3-position: structure-activity relationships at adenosine receptors
Journal of Medicinal Chemistry 1993.0
Effect of trifluoromethyl and other substituents on activity of xanthines at adenosine receptors
Journal of Medicinal Chemistry 1993.0
Structure-Activity Relationships of 1,3-Dialkylxanthine Derivatives at Rat A3 Adenosine Receptors
Journal of Medicinal Chemistry 1994.0
Effects of 8-phenyl and 8-cycloalkyl substituents on the activity of mono-, di, and trisubstituted alkylxanthines with substitution at the 1-, 3-, and 7-positions
Journal of Medicinal Chemistry 1989.0
(E)-1,3-Dialkyl-7-methyl-8-(3,4,5-trimethoxystyryl)xanthines: potent and selective adenosine A2 antagonists
Journal of Medicinal Chemistry 1992.0