Synthesis and receptor binding of N-substituted tropane derivatives. High-affinity ligands for the cocaine receptor

Journal of Medicinal Chemistry
1991.0

Abstract

The synthesis and pharmacological characterization of a series of N-substituted 3-(4-fluorophenyl)tropane derivatives is reported. The compounds displayed binding characteristics that paralleled those of cocaine, and several had substantially higher affinity at cocaine recognition sites. Conjugate addition of 4-fluorophenyl magnesium bromide to anhydroecgonine methyl ester gave 2 beta-(carbomethoxy)-3 beta-(4-fluorophenyl)tropane (4a, designated CFT, also known as WIN 35,428) after flash chromatography. N demethylation of 4a was effected by Zn/HOAc reduction of the corresponding 2,2,2-trichloroethyl carbamate to give 2 beta-carbomethoxy-3 beta-(4-fluorophenyl)nortropane (5), which was alkylated with allyl bromide to afford the N-allyl analogue, 6. The N-propyl analogue, 7, was prepared by catalytic reduction (Pd/C) of 6. The most potent analogue, 4a, was tritiated at a specific activity of 81.3 Ci/mmol. [3H]4a bound rapidly and reversibly to caudate putamen membranes; the two-component binding curve typical of cocaine analogues was observed. Equilibrium was achieved within 2 h and was stable for at least 4 h. High- and low-affinity Kd values observed for [3H]4a (4.7 and 60 nM, respectively) were more than 4 times lower than those for [3H]cocaine, and the density of binding sites (Bmax = 50 pmol/g, high, and 290 pmol/g, low) for the two drugs were comparable. Nonspecific binding of [3H]4a was 5-10% of total binding.

Knowledge Graph

Similar Paper

Synthesis and receptor binding of N-substituted tropane derivatives. High-affinity ligands for the cocaine receptor
Journal of Medicinal Chemistry 1991.0
Synthesis and binding affinities of 2β-(3-iodoallyloxycarbonyl)-3β-(4-substituted-aryl)tropane analogues as ligands for the dopamine transporter studies
Bioorganic & Medicinal Chemistry Letters 2001.0
N-Modified analogs of cocaine: synthesis and inhibition of binding to the cocaine receptor
Journal of Medicinal Chemistry 1992.0
Substituted 3-phenyltropane analogs of cocaine: synthesis, inhibition of binding at cocaine recognition sites, and positron emission tomography imaging
Journal of Medicinal Chemistry 1993.0
Synthesis and Ligand Binding of η<sup>6</sup>-(2β-Carbomethoxy-3β-phenyltropane) Transition Metal Complexes
Journal of Medicinal Chemistry 1996.0
Synthesis, Structure, Dopamine Transporter Affinity, and Dopamine Uptake Inhibition of 6-Alkyl-3-benzyl-2-[(methoxycarbonyl)methyl]tropane Derivatives
Journal of Medicinal Chemistry 1997.0
Novel 3.alpha.-(Diphenylmethoxy)tropane Analogs: Potent Dopamine Uptake Inhibitors without Cocaine-like Behavioral Profiles
Journal of Medicinal Chemistry 1994.0
Synthesis and ligand binding of cocaine isomers at the cocaine receptor
Journal of Medicinal Chemistry 1991.0
3‘-Chloro-3α-(diphenylmethoxy)tropane But Not 4‘-Chloro-3α- (diphenylmethoxy)tropane Produces a Cocaine-like Behavioral Profile
Journal of Medicinal Chemistry 1997.0
Synthesis, Cocaine Receptor Affinity, and Dopamine Uptake Inhibition of Several New 2.beta.-Substituted 3.beta.-Phenyltropanes
Journal of Medicinal Chemistry 1994.0