Synthesis and binding of [125I2]philanthotoxin-343, [125I2]philanthotoxin-343-lysine, and [125I2]philanthotoxin-343-arginine to rat brain membranes

Journal of Medicinal Chemistry
1991.0

Abstract

125I2-iodinated philanthotoxin-343 (PhTX-343), [125I2]PhTX-343-arginine, and [125I2]PhTX-343-lysine were synthesized and evaluated as probes for glutamate receptors in rat brain synaptic membranes. It was found that these probes were not specific for the glutamate receptors but may be useful for investigating the polyamine binding site. Filtration assays with Whatman GF/B fiber glass filters were unsuitable because the iodinated PhTX-343 analogues exhibited high nonspecific binding to the filters, thus hindering detection of specific binding to membranes. When binding was measured by a centrifugal assay, [125I2]PhTX-343-lysine bound with low affinity (KD = 11.4 +/- 2 microM) to a large number of sites (37.2 +/- 9.1 nmol/mg of protein). The binding of [125I2]PhTX-343-lysine was sensitive only to the polyamines spermine and spermidine, which displaced [125I2]PhTX-343-lysine with Ki values of (3.77 +/- 1.4) x 10(-5) M and (7.51 +/- 0.77) x 10(-5) M, respectively. The binding was insensitive to glutamate receptor agonists and antagonists. Binding results with [125I2]PhTX-343-arginine were similar to those of [125I2]-PhTX-343-lysine. Considering the high number of toxin binding sites (10000-fold more than glutamate) in these membranes and the insensitivity of the binding to almost all drugs that bind to glutamate receptors, it is evident that most of the binding observed is not to glutamate receptors. On the other hand, PhTX analogues with photoaffinity labels may be useful in the isolation/purification of various glutamate and nicotinic acetylcholine receptors; they could also be useful in structural studies of receptors and their binding sites.

Knowledge Graph

Similar Paper

Synthesis and binding of [125I2]philanthotoxin-343, [125I2]philanthotoxin-343-lysine, and [125I2]philanthotoxin-343-arginine to rat brain membranes
Journal of Medicinal Chemistry 1991.0
Uncompetitive Antagonism of AMPA Receptors:  Mechanistic Insights from Studies of Polyamine Toxin Derivatives
Journal of Medicinal Chemistry 2006.0
General Synthesis of β-Alanine-Containing Spider Polyamine Toxins and Discovery of Nephila Polyamine Toxins 1 and 8 as Highly Potent Inhibitors of Ionotropic Glutamate Receptors
Journal of Medicinal Chemistry 2012.0
Structure–Activity Relationship Studies of Argiotoxins: Selective and Potent Inhibitors of Ionotropic Glutamate Receptors
Journal of Medicinal Chemistry 2013.0
Structure–Activity Relationship Studies ofN-Methylated andN-Hydroxylated Spider Polyamine Toxins as Inhibitors of Ionotropic Glutamate Receptors
Journal of Medicinal Chemistry 2014.0
Neuroactive Polyamine Wasp Toxins:  Nuclear Magnetic Resonance Spectroscopic Analysis of the Protolytic Properties of Philanthotoxin-343
Journal of Medicinal Chemistry 1996.0
Molecular Features Associated with Polyamine Modulation of NMDA Receptors
Journal of Medicinal Chemistry 1998.0
Chemoenzymatic Synthesis of New 2,4-syn-Functionalized (S)-Glutamate Analogues and Structure–Activity Relationship Studies at Ionotropic Glutamate Receptors and Excitatory Amino Acid Transporters
Journal of Medicinal Chemistry 2013.0
Synthesis of (3-hydroxy-pyrazolin-5-yl)glycine based ligands interacting with ionotropic glutamate receptors
European Journal of Medicinal Chemistry 2014.0
4-Alkyl- and 4-Cinnamylglutamic Acid Analogues Are Potent GluR5 Kainate Receptor Agonists
Journal of Medicinal Chemistry 2000.0