Synthesis and cholinergic properties of N-aryl-2-[[[5-[(dimethylamino)methyl]-2-furanyl]methyl]thio]ethylamino analogs of ranitidine

Journal of Medicinal Chemistry
1992.0

Abstract

A series of N-aryl-2-[[[5-[(dimethylamino)methyl]-2- furanyl]methyl]thio]ethylamino analogs of the H2-antagonist, ranitidine, was synthesized and the abilities of the compounds to alleviate the cholinergic deficit characteristic of Alzheimer's disease evaluated. The compounds were initially tested for their ability to inhibit human erythrocyte acetylcholinesterase activity in vitro. Selected compounds were further evaluated for butyrylcholinesterase inhibition, M1 and M2 cholinergic receptor binding, potentiation of ileal contractions, and the ability to elevate brain acetylcholine levels in mice. The analogs were compared to tetrahydroaminoacridine and to a recently reported series of bis-[[(dimethylamino)methyl]furans]. The N-aryl-2-[[[5-[(dimethylamino)methyl]-2- furanyl]methyl]thio]ethylamine derivatives were generally comparable to tetrahydroaminoacridine and the bis[[(dimethylamino)methyl]furans] in acetylcholinesterase inhibition, M1/M2 receptor binding, and the potentiation of ileal contractions, while being more potent inhibitors of acetylcholinesterase than butyrylcholinesterase. The 4-nitro-3-pyridazinyl analog, 26, was notable in demonstrating a potent and selective binding to the M2 receptor, with an M2 IC50/M1 IC50 of 0.060. Compounds in which the substituents on the dinitro-N-aryl moiety were relatively small were the best at inhibiting acetylcholinesterase in vitro. The N-aryl-2-[[[5-[(dimethylamino)methyl]-2- furanyl]methyl]thio]ethylamines in general, and those with small N-aryl substituents in particular, were superior to the bis[[(dimethylamino)methyl]furans] in elevating brain ACh levels in mice, probably due to enhanced distribution into the CNS. The 1,5-difluoro-2,4-dinitrophenyl analog, 8, resulted in the largest elevation in brain acetylcholine levels, affording a 53% increase at 88 mg/kg.

Knowledge Graph

Similar Paper

Synthesis and cholinergic properties of N-aryl-2-[[[5-[(dimethylamino)methyl]-2-furanyl]methyl]thio]ethylamino analogs of ranitidine
Journal of Medicinal Chemistry 1992.0
Synthesis and cholinergic properties of bis[[(dimethylamino)methyl]furanyl] analogs of ranitidine
Journal of Medicinal Chemistry 1992.0
Synthesis and biological evaluation of ranitidine analogs as multiple-target-directed cognitive enhancers for the treatment of Alzheimer’s disease
Bioorganic & Medicinal Chemistry Letters 2016.0
Novel [2-(4-Piperidinyl)ethyl](thio)ureas: synthesis and antiacetylcholinesterase activity
Journal of Medicinal Chemistry 1994.0
Synthesis of aminoalkyl-substituted aurone derivatives as acetylcholinesterase inhibitors
Bioorganic & Medicinal Chemistry 2015.0
Synthesis and in vitro evaluation of N-alkyl-7-methoxytacrine hydrochlorides as potential cholinesterase inhibitors in Alzheimer disease
Bioorganic & Medicinal Chemistry Letters 2010.0
Methyl Analogues of the Experimental Alzheimer Drug Phenserine:  Synthesis and Structure/Activity Relationships for Acetyl- and Butyrylcholinesterase Inhibitory Action
Journal of Medicinal Chemistry 2001.0
Potential of aryl–urea–benzofuranylthiazoles hybrids as multitasking agents in Alzheimer's disease
European Journal of Medicinal Chemistry 2015.0
Novel Tacrine Analogues for Potential Use against Alzheimer's Disease:  Potent and Selective Acetylcholinesterase Inhibitors and 5-HT Uptake Inhibitors
Journal of Medicinal Chemistry 1997.0
Synthesis and structure-activity relationship study of benzofuran-based chalconoids bearing benzylpyridinium moiety as potent acetylcholinesterase inhibitors
European Journal of Medicinal Chemistry 2015.0