Synthesis and muscarinic activity of quinuclidinyl- and (1-azanorbornyl)pyrazine derivatives

Journal of Medicinal Chemistry
1992.0

Abstract

The synthesis and cortical muscarinic activity of a novel series of pyrazine-based agonists is described. Quinuclidine and azanorbornane derivatives were prepared either by reaction of lithiated pyrazines with azabicyclic ketones, followed by chlorination and reduction, or by reaction of the lithium enolate of the azabicyclic ester with 2-chloropyrazines followed by ester hydrolysis and decarboxylation. Substitution at all three positions of the heteroaromatic ring has been explored. Optimal muscarinic agonist activity was observed for unsubstituted pyrazines in the azanorbornane series. The exo-1-azanorbornane 18a is one of the most efficacious and potent centrally active muscarinic agonists known. Studies on the 3-substituted derivatives have provided evidence of the preferred conformation of these ligands for optimal muscarinic activity. Substitution at C6 gave ligands with increased affinity and reduced efficacy. Moving the position of the diazine ring nitrogens to give pyrimidine and pyridazine derivatives resulted in a significant loss of muscarinic activity.

Knowledge Graph

Similar Paper

Synthesis and muscarinic activity of quinuclidinyl- and (1-azanorbornyl)pyrazine derivatives
Journal of Medicinal Chemistry 1992.0
Synthesis and biological activity of 1,2,4-oxadiazole derivatives: highly potent and efficacious agonists for cortical muscarinic receptors
Journal of Medicinal Chemistry 1990.0
Antimuscarinic 3-(2-Furanyl)quinuclidin-2-ene Derivatives:  Synthesis and Structure−Activity Relationships
Journal of Medicinal Chemistry 1997.0
Novel quinuclidine-based ligands for the muscarinic cholinergic receptor
Journal of Medicinal Chemistry 1990.0
Novel functional M1 selective muscarinic agonists. 2. Synthesis and structure-activity relationships of 3-pyrazinyl-1,2,5,6-tetrahydro-1-methylpyridines. Construction of a molecular model for the M1 pharmacophore
Journal of Medicinal Chemistry 1992.0
Synthesis and muscarinic activities of 1,2,4-thiadiazoles
Journal of Medicinal Chemistry 1990.0
Functionally selective M1 muscarinic agonists. 3. Side chain and azacycles contributing to functional muscarinic selectivity among pyrazinylazacycles
Journal of Medicinal Chemistry 1995.0
Synthesis and in vitro biological profile of all four isomers of the potent muscarinic agonist 3-(3-methyl-1,2,4-oxadiazol-5-yl)-1-azabicyclo[2.2.1]heptane
Journal of Medicinal Chemistry 1992.0
Resolved pyrrolidine, piperidine, and perhydroazepine analogs of the muscarinic agent N-methyl-N-(1-methyl-4-pyrrolidino-2-butynyl)acetamide
Journal of Medicinal Chemistry 1990.0
Muscarinic receptor binding and activation of second messengers by substituted N-methyl-N-[4-(1-azacycloalkyl)-2-butynyl]acetamides
Journal of Medicinal Chemistry 1991.0