1-(2-Aminoethyl)-3-methyl-8,9-dihydropyrano[3,2-e]indole: a rotationally restricted phenolic analog of the neurotransmitter serotonin and agonist selective for serotonin (5-HT2-type) receptors

Journal of Medicinal Chemistry
1992.0

Abstract

A series of rotationally restricted phenolic analogs of the neurotransmitter serotonin has been synthesized with the 5-hydroxyindole portion of serotonin replaced by a dihydropyrano[3,2-e]-indole (1, 3, 4, and 5) and a dihydropyrano[2,3-f]indole (2). The receptor binding profile of these compounds has been studied and compared to the natural substrate serotonin. The dihydropyrano[3,2-e]indole derivatives (1, 3, 4, and 5) possess lower affinity for 5-HT1 receptors but equal or greater affinity for 5-HT2 receptors. Like serotonin, these compounds dose-dependently stimulated phosphatidylinositol turnover in rat brain slices. Moreover, the response to 1-(2-aminoethyl)-3-methyl-8,9-dihydropyrano[3,2-]indole (5, CP-132,484) and 1-(2-aminoethyl)-8,9-dihydropyrano[3,2-e]indole (4) is selectively antagonized by 5-HT2 receptor antagonists establishing these tryptamines as selective 5-HT2 receptor agonists. The high affinity and potency of 5 for 5-HT2 receptors suggests that the C5-hydroxy group in serotonin can function as a hydrogen bond acceptor in a 5-HT2 receptor with a directionality of interaction which is down and away from C6 in serotonin (Figure 5). Furthermore, the potent affinity of these compounds for 5-HT2 receptors coupled with their poor affinity for 5-HT1 receptors indicates that the aminoethyl side chain of serotonin adopts significantly different conformations in 5-HT1 versus 5-HT2 receptors.

Knowledge Graph

Similar Paper

1-(2-Aminoethyl)-3-methyl-8,9-dihydropyrano[3,2-e]indole: a rotationally restricted phenolic analog of the neurotransmitter serotonin and agonist selective for serotonin (5-HT2-type) receptors
Journal of Medicinal Chemistry 1992.0
Synthesis and serotonergic pharmacology of the enantiomers of 3-[(N-methylpyrrolidin-2-yl)methyl]-5-methoxy-1H-indole: discovery of stereogenic differentiation in the aminoethyl side chain of the neurotransmitter serotonin
Journal of Medicinal Chemistry 1992.0
5-Methyl-1-(3-pyridylcarbamoyl)-1,2,3,5-tetrahydropyrrolo[2,3-f]indole: A Novel 5-HT2C/5-HT2B Receptor Antagonist with Improved Affinity, Selectivity, and Oral Activity
Journal of Medicinal Chemistry 1995.0
Synthesis and serotonin binding site studies of some conformationally restricted indolylethylamine analogs based on 2-amino-3-(3'-indolyl)bicyclo[2.2.2]octane
Journal of Medicinal Chemistry 1990.0
Binding of indolylalkylamines at 5-HT2 serotonin receptors: examination of a hydrophobic binding region
Journal of Medicinal Chemistry 1990.0
2,3-Dihydro and carbocyclic analogs of tryptamines: interaction with serotonin receptors
Journal of Medicinal Chemistry 1982.0
Development of a Receptor-Interaction Model for Serotonin 5-HT2 Receptor Antagonists. Predicting Selectivity with Respect to Dopamine D2 Receptors
Journal of Medicinal Chemistry 1994.0
Novel Agonists of 5HT<sub>2C</sub> Receptors. Synthesis and Biological Evaluation of Substituted 2-(Indol-1-yl)-1-methylethylamines and 2-(Indeno[1,2-b]pyrrol-1-yl)-1-methylethylamines. Improved Therapeutics for Obsessive Compulsive Disorder
Journal of Medicinal Chemistry 1997.0
3-(1,2,5,6-Tetrahydropyrid-4-yl)pyrrolo[3,2-b]pyrid-5-one: a potent and selective serotonin (5-HT1*) agonist and rotationally restricted phenolic analog of 5-methoxy-3-(1,2,5,6-tetrahydropyrid-4-yl)indole
Journal of Medicinal Chemistry 1990.0
Benzofuran bioisosteres of hallucinogenic tryptamines
Journal of Medicinal Chemistry 1992.0