Opioid agonist and antagonist activities of morphindoles related to naltrindole

Journal of Medicinal Chemistry
1992.0

Abstract

A series of naltrindole-related ligands (4-10) with an N-methyl,N-phenethyl,N-cinnamyl, or an unsubstituted basic nitrogen were synthesized and tested for opioid agonist and antagonist activity in smooth muscle preparations and in mice. The nor compounds (4 and 6) and the phenethyl derivatives (5 and 8) displayed full agonist activity (IC50 = 85-179 nM) in the mouse vas deferens preparation (MVD) while the other members of the series exhibited partial agonist or weak antagonist activity. In the guinea pig ileum preparation (GPI), all compounds except 8 were partial agonists. The ligands that were evaluated in mice were found to produce antinociception that was not selectively mediated via delta opioid receptors. However, two of these ligands (4 and 5) appeared to be delta-selective opioid receptor antagonists at subthreshold doses for antinociception. The finding that all of the compounds bind selectively to delta opioid receptors in guinea pig brain membranes together with the in vitro pharmacology and in vivo antagonist studies suggests that the lack of delta agonist selectivity in vivo may be due to a number of factors, including a basic difference between the delta receptor system in the MVD and in the mouse brain. Further, it is suggested that the constellation of message and address components in the morphindole nucleus may tend to stabilize delta receptors in the brain in antagonist state.

Knowledge Graph

Similar Paper

Opioid agonist and antagonist activities of morphindoles related to naltrindole
Journal of Medicinal Chemistry 1992.0
N-cyclohexylethyl-N-noroxymorphindole: a μ-Opioid preferring analogue of naltrindole
Bioorganic & Medicinal Chemistry Letters 2000.0
Identification of Opioid Ligands Possessing Mixed μ Agonist/δ Antagonist Activity among Pyridomorphinans Derived from Naloxone, Oxymorphone, and Hydropmorphone
Journal of Medicinal Chemistry 2004.0
Probes for Narcotic Receptor-Mediated Phenomena. 20. Alteration of Opioid Receptor Subtype Selectivity of the 5-(3-Hydroxyphenyl)morphans by Application of the Message-Address Concept: Preparation of .delta.-Opioid Receptor Ligands
Journal of Medicinal Chemistry 1995.0
Application of the message-address concept in the design of highly potent and selective non-peptide .delta. opioid receptor antagonists
Journal of Medicinal Chemistry 1988.0
Design, Synthesis, and Biological Evaluation of 6α- and 6β-N-Heterocyclic Substituted Naltrexamine Derivatives as μ Opioid Receptor Selective Antagonists
Journal of Medicinal Chemistry 2009.0
Naltrindole-5'-isothiocyanate: a nonequilibrium, highly selective .delta.-opioid receptor antagonist
Journal of Medicinal Chemistry 1990.0
Design and synthesis of naltrexone-derived affinity labels with nonequilibrium opioid agonist and antagonist activities. Evidence for the existence of different .mu. receptor subtypes in different tissues
Journal of Medicinal Chemistry 1984.0
A selective .delta.1 opioid receptor agonist derived from oxymorphone. Evidence for separate recognition sites for .delta.1 opioid receptor agonists and antagonists
Journal of Medicinal Chemistry 1993.0
Probes for Narcotic Receptor-Mediated Phenomena. 21. Novel Derivatives of 3-(1,2,3,4,5,11-Hexahydro-3-methyl-2,6-methano-6H-azocino[4,5-b]indol-6-yl)- phenols with Improved δ Opioid Receptor Selectivity
Journal of Medicinal Chemistry 1996.0