Exploration of N-phosphonoalkyl-, N-phosphonoalkenyl-, and N-(phosphonoalkyl)phenyl-spaced .alpha.-amino acids as competitive N-methyl-D-aspartic acid antagonists

Journal of Medicinal Chemistry
1992.0

Abstract

A series of N-substituted alpha-amino acids containing terminal phosphonic acid groups has been synthesized as potential N-methyl-D-aspartate (NMDA) receptor antagonists. NMDA receptor affinity was determined by displacement of a known ligand ([3H]CPP) from crude rat brain synaptic membranes; an antagonist action was demonstrated by the inhibition of glutamate-induced accumulation of [45Ca2+] in cultured rat cortical neurons. Receptor affinity was significantly correlated with antagonist activity (Figure 1). Moderate affinity (IC50 = 1-2 microM) was retained for analogues (31 and 32, Table I; and 59 and 66, Table II) with reduced flexibility in their phosphonate side chains and is consistent with entropy playing a role in determining receptor affinity. Modeling studies suggest a folded conformation that brings the distal phosphonic acid group into close proximity with the alpha-carboxylate is required for binding. Each of the active analogues possess entropy-limiting features (double bonds, phenyl rings) in their side chains that allows the superposition of their key NH2, alpha-COOH, and distal PO3H2 groups with those of known competitive antagonists. Affinity decreased for analogues with alpha-carbon substitution, presumably because the alpha-substituent inhibits the folding of these structures into a bioactive conformation and occupies receptor-excluded volume. A complete description of the NMDA antagonist pharmacophore model is provided in a companion paper.

Knowledge Graph

Similar Paper

Exploration of N-phosphonoalkyl-, N-phosphonoalkenyl-, and N-(phosphonoalkyl)phenyl-spaced .alpha.-amino acids as competitive N-methyl-D-aspartic acid antagonists
Journal of Medicinal Chemistry 1992.0
Generation of N-methyl-D-aspartate agonist and competitive antagonist pharmacophore models. Design and synthesis of phosphonoalkyl-substituted tetrahydroisoquinolines as novel antagonists
Journal of Medicinal Chemistry 1992.0
New and versatile approaches to the synthesis of CPP-related competitive NMDA antagonists. Preliminary structure activity relationships and pharmacological evaluation
Journal of Medicinal Chemistry 1990.0
Potent quinoxaline-spaced phosphono .alpha.-amino acids of the AP-6 type as competitive NMDA antagonists: synthesis and biological evaluation
Journal of Medicinal Chemistry 1993.0
Bioisosteric replacement of the .alpha.-amino carboxylic acid functionality in 2-amino-5-phosphonopentanoic acid yields unique 3,4-diamino-3-cyclobutene-1,2-dione containing NMDA antagonists
Journal of Medicinal Chemistry 1992.0
Impact of Polyamine Analogs on the NMDA Receptor
Journal of Medicinal Chemistry 1995.0
Synthesis and Pharmacology of Highly Selective Carboxy and Phosphono Isoxazole Amino Acid AMPA Receptor Antagonists
Journal of Medicinal Chemistry 1996.0
Synthesis and Structure-Activity Studies on Acidic Amino Acids and Related Diacids as NMDA Receptor Ligands
Journal of Medicinal Chemistry 1994.0
Development of 2′-Substituted (2S,1′R,2′S)-2-(Carboxycyclopropyl)glycine Analogues as Potent N-Methyl-<scp>d</scp>-aspartic Acid Receptor Agonists
Journal of Medicinal Chemistry 2013.0
Drug Design, in Vitro Pharmacology, and Structure−Activity Relationships of 3-Acylamino-2-aminopropionic Acid Derivatives, a Novel Class of Partial Agonists at the Glycine Site on theN-Methyl-<scp>d</scp>-aspartate (NMDA) Receptor Complex
Journal of Medicinal Chemistry 2009.0