First use of the Taylor pteridine synthesis as a route to polyglutamate derivatives of antifolates. 46. Side chain modified 5-deazafolate and 5-deazatetrahydrofolate analogs as mammalian folylpolyglutamate synthetase and glycinamide ribonucleotide formyl transferase inhibitors: synthesis and in vitro biological evaluation

Journal of Medicinal Chemistry
1992.0

Abstract

5-Deazafolate and 5-deazatetrahydrofolate (DATHF) analogues with the glutamic acid side chain replaced by homocysteic acid (HCysA), 2-amino-4-phosphonobutanoic acid (APBA), and ornithine (Orn) were synthesized as part of a larger program directed toward inhibitors of folylpolyglutamate synthetase (FPGS) as probes of the FPGS active site and as potential therapeutic agents. The tetrahydro compounds were also of interest as non-polyglutamatable inhibitors of the purine biosynthetic enzyme glycinamide ribonucleotide formyltransferase (GARFT). Reductive coupling of N2-acetamido-6-formylpyrido[2,3-d]pyrimidin-4(3H)-one with 4-aminobenzoic acid, followed by N10-formylation, mixed anhydride condensation of the resultant N2-acetyl-N10-formyl-5- deazapteroic acid with L-homocysteic acid, and removal of the N2-acetyl and N10-formyl groups with NaOH, afforded N-(5-deazapteroyl)-L-homocysteic acid (5-dPteHCysA). Mixed anhydride condensation of N2-acetyl-N10-formyl- 5-deazapteroic acid with methyl D,L-2-amino-4-(diethoxyphosphinyl)butanoic acid, followed by consecutive treatment with Me3SiBr and NaOH, yielded D,L-2-[(5-deazapteroyl)amino]-4-phosphonobutanoic acid (5-dPteAPBA). Treatment with NaOH alone led to retention of one ethyl ester group on the phosphonate moiety. Catalytic hydrogenation of N2-acetyl-N10-formyl-5-deazapteroic acid followed by mixed anhydride condensation with methyl L-homocysteate and deprotection with NaOH afforded N-(5,6,7,8-tetrahydro-5-deazapteroyl)-L-homocysteic acid (5-dH4PteHCysA). Similar chemistry starting from methyl D,L-2-amino-4-(diethoxyphosphinyl)butanoic acid and methyl N delta-(benzyloxycarbonyl)-L-ornithinate yielded D,L-2-[(5-deaza-5,6,7,8-tetrahydropteroyl)amino]-4-phosphonobut ano ic acid (5-dH4Pte-APBA) and N alpha-(5-deaza-5,6,7,8-tetrahydropteroyl)-L-ornithine (5-dH4PteOrn), respectively. The 5-deazafolate analogues were inhibitors of mouse liver FPGS, and the DATHF analogues inhibited both mouse FPGS and mouse leukemic cell GARFT. Analogues with HCysA and monoethyl APBA side chains were less active as FPGS inhibitors than those containing an unesterified gamma-PO(OH)2 group, and their interaction with the enzyme was noncompetitive against variable folyl substrate. In contrast, Orn and APBA analogues obeyed competitive inhibition kinetics and were more potent, with Ki values as low as 30 nM. Comparison of the DATHF analogues as GARFT inhibitors indicated that the Orn side chain diminished activity relative to DATHF, but that the compounds with gamma-sulfonate or gamma-phosphonate substitution retained activity, with Ki values in the submicromolar range. The best GARFT inhibitor was the 5-dH4PteAPBA diastereomer mixture, with a Ki of 47 nM versus 65 nM for DATHF. None of the compounds showed activity against cultured WI-L2 or CEM human leukemic lymphoblasts at concentrations of up to 100 microM.(ABSTRACT TRUNCATED AT 400 WORDS)

Knowledge Graph

Similar Paper

First use of the Taylor pteridine synthesis as a route to polyglutamate derivatives of antifolates. 46. Side chain modified 5-deazafolate and 5-deazatetrahydrofolate analogs as mammalian folylpolyglutamate synthetase and glycinamide ribonucleotide formyl transferase inhibitors: synthesis and in vitro biological evaluation
Journal of Medicinal Chemistry 1992.0
(6R,6S)-5,8,10-Trideaza-5,6,7,8-tetrahydrofolate and (6R,6S)-5,8,10-trideaza-5,6,7,8-tetrahydropteroyl-L-ornithine as potential antifolates and antitumor agents. 35
Journal of Medicinal Chemistry 1989.0
Synthesis and biological evaluation of N.alpha.-(5-deaza-5,6,7,8-tetrahydropteroyl)-L-ornithine
Journal of Medicinal Chemistry 1992.0
Inhibition of mammalian folylpolyglutamate synthetase and human dihydrofolate reductase by 5,8-dideaza analogs of folic acid and aminopterin bearing a terminal L-ornithine
Journal of Medicinal Chemistry 1989.0
Synthesis and antifolate properties of 10-alkyl-5,10-dideaza analogs of methotrexate and tetrahydrofolic acid
Journal of Medicinal Chemistry 1990.0
Synthesis and antifolate activity of 5-methyl-5,10-dideaza analogs of aminopterin and folic acid and an alternative synthesis of 5,10-dideazatetrahydrofolic acid, a potent inhibitor of glycinamide ribonucleotide formyltransferase
Journal of Medicinal Chemistry 1988.0
Folate analogs. 26. Syntheses and antifolate activity of 10-substituted derivatives of 5,8-dideazafolic acid and of the poly-.gamma.-glutamyl metabolites of N10-propargyl-5,8-dideazafolic acid (PDDF)
Journal of Medicinal Chemistry 1986.0
Methotrexate analogs. 26. Inhibition of dihydrofolate reductase and folylpolyglutamate synthetase activity and in vitro tumor cell growth by methotrexate and aminopterin analogs containing a basic amino acid side chain
Journal of Medicinal Chemistry 1986.0
Folate analogs. 35. Synthesis and biological evaluation of 1-deaza, 3-deaza, and bridge-elongated analogs of N10-propargyl-5,8-dideazafolic acid
Journal of Medicinal Chemistry 1991.0
Synthesis and biological evaluation of 8-deazahomofolic acid and its tetrahydro derivative
Journal of Medicinal Chemistry 1988.0