Synthesis and serotonergic activity of 5-(oxadiazolyl)tryptamines: potent agonists for 5-HT1D receptors

Journal of Medicinal Chemistry
1993.0

Abstract

The synthesis and 5-HT1D receptor activity of a novel series of 5-(oxadiazolyl)tryptamines is described. Modifications of the oxadiazole 3-substituent, length of the linking chain (n), and the amine substituents are explored and reveal a large binding pocket in the 5-HT1D receptor domain. Oxadiazole substituents such as benzyl are accommodated without loss of agonist potency or efficacy. The incorporation of polar functionality on a phenyl or benzyl spacer group results in a 10-fold increase in affinity and functional potency. Optimal 5-HT1D activity is observed when the heterocycle is conjugated with the indole and the benzyl sulfonamides 20t and 20u represent some of the most potent 5-HT1D agonists known. Replacement of O for S in the heterocycle leads to a further increase in potency. Deletion of oxadiazole N-2 does not reduce activity, suggesting the requirement for only one H-bond acceptor in this location. The selectivity of these compounds for 5-HT1D receptors over other serotonergic receptors is discussed. Sulfonamide 20t shows > or = 1000-fold selectivity for 5-HT1D over 5-HT2, 5-HT1C, and 5-HT3 receptors and 10-fold selectivity with respect to 5-HT1A receptors. The functional activity of this series of compounds is studied and demonstrates high 5-HT1D receptor potency and efficacy comparable to that of 5-HT.

Knowledge Graph

Similar Paper

Synthesis and serotonergic activity of 5-(oxadiazolyl)tryptamines: potent agonists for 5-HT1D receptors
Journal of Medicinal Chemistry 1993.0
Synthesis and Serotonergic Activity of N,N-Dimethyl-2-[5-(1,2,4-triazol-1-ylmethyl)-1H-indol-3-yl]ethylamine and Analogs: Potent Agonists for 5-HT1D Receptors
Journal of Medicinal Chemistry 1995.0
Synthesis, biological activity and electrostatic properties of 3-[2-(dimethylamino)ethyl]-5-[(3-amino-1,2,4-thiadiazol-5-yl)methyl]-1H-indole, a novel 5-HT1D receptor agonist.
Bioorganic & Medicinal Chemistry Letters 1993.0
Binding of O-Alkyl Derivatives of Serotonin at Human 5-HT1Dβ Receptors
Journal of Medicinal Chemistry 1996.0
Synthesis and serotonergic activity of arylpiperazide derivatives of serotonin: potent agonists for 5-HT1D receptors
Journal of Medicinal Chemistry 1995.0
Synthesis of New Arylpiperazinylalkylthiobenzimidazole, Benzothiazole, or Benzoxazole Derivatives as Potent and Selective 5-HT<sub>1A</sub> Serotonin Receptor Ligands
Journal of Medicinal Chemistry 2008.0
5-(Nonyloxy)tryptamine: A Novel High-Affinity 5-HT1D.beta. Serotonin Receptor Agonist
Journal of Medicinal Chemistry 1994.0
5-[(3-Nitropyrid-2-yl)amino]indoles: Novel Serotonin Agonists with Selectivity for the 5-HT1D Receptor. Variation of the C3 Substituent on the Indole Template Leads to Increased 5-HT1D Receptor Selectivity
Journal of Medicinal Chemistry 1994.0
N-Methyl-5-tert-butyltryptamine:  A Novel, Highly Potent 5-HT<sub>1D</sub> Receptor Agonist
Journal of Medicinal Chemistry 1999.0
Benzylimidazolines as h5-HT<sub>1B/1D</sub> Serotonin Receptor Ligands: A Structure−Affinity Investigation
Journal of Medicinal Chemistry 1998.0