Synthesis and antimuscarinic activity of some 1-cycloalkyl-1-hydroxy-1-phenyl-3-(4-substituted piperazinyl)-2-propanones and related compounds

Journal of Medicinal Chemistry
1993.0

Abstract

A new class of substituted 1-phenyl-3-piperazinyl-2-propanones with antimuscarinic activity is reported. As part of a structure-activity relationship study of this class, various structural modifications, particularly ones involving substitution of position 1 and the terminal piperazine nitrogen, were investigated. The objective of this study was to derive new antimuscarinic agents with potential utility in treating urinary incontinence associated with bladder muscle instability. These compounds were examined for M1, M2, and M3 muscarinic receptor selectivity in isolated tissue assays and for in vivo effects on urinary bladder contraction, mydriasis, and salivation in guinea pigs. Potency and selectivity in these assays were influenced most notably by the nature of the substituent group on the terminal nitrogen of the piperazine moiety. Benzyl substitution was particularly advantageous in producing compounds with functional M3 receptor (smooth muscle) and bladder selectivity; it provided several candidates for clinical study. In vivo, 3-(4-benzyl-piperazinyl)-1-cyclobutyl-1-hydroxy-1-phenyl-2-propanone (24) demonstrated 11- and 37-fold separations in its effect on bladder function versus mydriatic and salivation responses, respectively. The corresponding 2-chlorobenzyl derivative 25 was more than 178-fold selective for M3 versus M1 and M2 muscarinic receptors. 3-(4-Benzylpiperazinyl)-1,1-diphenyl-1-hydroxy-2-propanone (51) was 18-fold selective for M3 versus M1 and 242-fold selective for M3 versus M2 receptors. It was also selective in guinea pigs, where it displayed 20- and 41-fold separations between bladder function and effect on mydriasis and salivation, respectively. In general, the results of this study are consistent with the proposition that the described piperazinylpropanones interact with muscarcinic receptors in a hydrogen-bonded form that presents a conformation similar to that apparently adopted by classical antimuscarinic agents.

Knowledge Graph

Similar Paper

Synthesis and antimuscarinic activity of some 1-cycloalkyl-1-hydroxy-1-phenyl-3-(4-substituted piperazinyl)-2-propanones and related compounds
Journal of Medicinal Chemistry 1993.0
Synthesis and antimuscarinic properties of some N-substituted 5-(aminomethyl)-3,3-diphenyl-2(3H)-furanones
Journal of Medicinal Chemistry 1992.0
Synthesis of some 3-(1-azabicyclo[2.2.2]octyl) 3-amino-2-hydroxy-2-phenylpropionates: profile of antimuscarinic efficacy and selectivity
Journal of Medicinal Chemistry 1990.0
Cyclohexylmethylpiperidinyltriphenylpropioamide:  A Selective Muscarinic M<sub>3</sub> Antagonist Discriminating against the Other Receptor Subtypes
Journal of Medicinal Chemistry 2002.0
Antimuscarinic 3-(2-Furanyl)quinuclidin-2-ene Derivatives:  Synthesis and Structure−Activity Relationships
Journal of Medicinal Chemistry 1997.0
Resolved pyrrolidine, piperidine, and perhydroazepine analogs of the muscarinic agent N-methyl-N-(1-methyl-4-pyrrolidino-2-butynyl)acetamide
Journal of Medicinal Chemistry 1990.0
Phenyl-substituted analogs of oxotremorine as muscarinic antagonists
Journal of Medicinal Chemistry 1992.0
Novel functional M1 selective muscarinic agonists. Synthesis and structure-activity relationships of 3-(1,2,5-thiadiazolyl)-1,2,5,6-tetrahydro-1-methylpyridines
Journal of Medicinal Chemistry 1992.0
Novel functional M1 selective muscarinic agonists. 2. Synthesis and structure-activity relationships of 3-pyrazinyl-1,2,5,6-tetrahydro-1-methylpyridines. Construction of a molecular model for the M1 pharmacophore
Journal of Medicinal Chemistry 1992.0
Tricyclic compounds as selective antimuscarinics. 1. Structural requirements for selectivity towards the muscarinic acetylcholine receptor in a series of pirenzepine and imipramine analogs
Journal of Medicinal Chemistry 1987.0