Synthesis and evaluation of imidazo[1,5-a][1,4]benzodiazepine esters with high affinities and selectivities at "diazepam-insensitive" benzodiazepine receptors

Journal of Medicinal Chemistry
1993.0

Abstract

A series of imidazo[1,5-a][1,4]benzodiazepine esters have been synthesized with varying ester side chains and 8-position substituents. The affinities of these compounds were evaluated at both "diazepam-insensitive" (DI) and diazepam-sensitive (DS) subtypes of the benzodiazepine receptor (BZR). A profound steric effect of the 3-position ester side chain moiety was observed on ligand affinity at DI. In contrast, ester size had a less robust effect on ligand affinity at DS. The tert-butyl ester compound 8 displayed the highest affinity (Ki = 1.7 nM) for DI within a series of 8-chloro esters. Furthermore, halogens at the 8-position resulted in an enhancement of both ligand affinity and selectivity at DI among the series of tert-butyl esters examined. The 8-nitro derivative 23 and 8-isothiocyanato congener 25 had high affinities for both DI and DS but exhibited little subtype selectivity (10.8 and 2.7 nM at DI versus 14 and 3.7 nM at DS, respectively). The 8-azido tert-butyl ester 29 exhibited a significantly higher affinity (Ki = 0.43 nM) and selectivity (DI/DS ratio of 0.2) than the corresponding ethyl ester, the prototypic DI ligand 1 (Ro 15-4513). Among the compounds synthesized, 29 is the highest affinity ligand for DI described to date while its 8-bromo analog 18 is the most selective ligand (DI/DS ratio of 0.17) for this novel BZR subtype.

Knowledge Graph

Similar Paper

Synthesis and evaluation of imidazo[1,5-a][1,4]benzodiazepine esters with high affinities and selectivities at "diazepam-insensitive" benzodiazepine receptors
Journal of Medicinal Chemistry 1993.0
New Insight into the Central Benzodiazepine Receptor–Ligand Interactions: Design, Synthesis, Biological Evaluation, and Molecular Modeling of 3-Substituted 6-Phenyl-4H-imidazo[1,5-a][1,4]benzodiazepines and Related Compounds
Journal of Medicinal Chemistry 2011.0
Benzodiazepine Receptor Ligands. 7. Synthesis and Pharmacological Evaluation of New 3-Esters of the 8-Chloropyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide. 3-(2-Thienylmethoxycarbonyl) Derivative:  An Anxioselective Agent in Rodents
Journal of Medicinal Chemistry 2002.0
High Affinity Central Benzodiazepine Receptor Ligands:  Synthesis and Biological Evaluation of a Series of Phenyltriazolobenzotriazindione Derivatives
Journal of Medicinal Chemistry 2005.0
Novel benzodiazepine receptor partial agonists: oxadiazolylimidazobenzodiazepines
Journal of Medicinal Chemistry 1989.0
Ethyl 8-Fluoro-6-(3-nitrophenyl)-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylate as Novel, Highly Potent, and Safe Antianxiety Agent
Journal of Medicinal Chemistry 2008.0
Synthesis and Structure−Activity Relationships of Fused Imidazopyridines:  A New Series of Benzodiazepine Receptor Ligands
Journal of Medicinal Chemistry 1996.0
.beta.-Carbolines as benzodiazepine receptor ligands. 1. Synthesis and benzodiazepine receptor interaction of esters of .beta.-carboline-3-carboxylic acid
Journal of Medicinal Chemistry 1983.0
Design, Synthesis, and Biological Evaluation of Imidazo[1,5-a]quinoline as Highly Potent Ligands of Central Benzodiazepine Receptors
Journal of Medicinal Chemistry 2016.0
Design, synthesis and biological evaluation of 7-substituted 4-phenyl-6H-imidazo[1,5-a]thieno[3,2-f] [1,4]diazepines as safe anxiolytic agents
European Journal of Medicinal Chemistry 2020.0