Selective .kappa.-Opioid Agonists: Synthesis and Structure-Activity Relationships of Piperidines Incorporating an Oxo-Containing Acyl Group

Journal of Medicinal Chemistry
1994.0

Abstract

This study describes the synthesis and the structure-activity relationships (SARs) of the (S)-(-)-enantiomers of a novel class of 2-(aminomethyl)piperidine derivatives, using kappa-opioid binding affinity and antinociceptive potency as the indices of biological activity. Compounds incorporating the 1-tetralon-6-ylacetyl residue (30 and 34-45) demonstrated an in vivo antinociceptive activity greater than predicted on the basis of their kappa-binding affinities. In particular, (2S)-2-[(dimethylamino)methyl]-1-[(5,6,7,8-tetrahydro-5-oxo-2- naphthyl)acetyl]piperidine (34) was found to have a potency similar to spiradoline in animal models of antinociception after subcutaneous administration, with ED50s of 0.47 and 0.73 mumol/kg in the mouse and in the rat abdominal constriction tests, respectively. Further in vivo studies in mice and/or rats revealed that compound 34, compared to other selective kappa-agonists, has a reduced propensity to cause a number of kappa-related side effects, including locomotor impairment/sedation and diuresis, at antinociceptive doses. For example, it has an ED50 of 26.5 mumol/kg sc in the rat rotarod model, exhibiting a ratio of locomotor impairment/sedation vs analgesia of 36. Possible reasons for this differential activity and its clinical consequence are discussed.

Knowledge Graph

Similar Paper

Selective .kappa.-Opioid Agonists: Synthesis and Structure-Activity Relationships of Piperidines Incorporating an Oxo-Containing Acyl Group
Journal of Medicinal Chemistry 1994.0
(2S)-1-(Arylacetyl)-2-(aminomethyl)piperidine derivatives: novel, highly selective .kappa. opioid analgesics
Journal of Medicinal Chemistry 1991.0
Highly selective .kappa. opioid analgesics. Synthesis and structure-activity relationships of novel N-[(2-aminocyclohexyl)aryl]acetamide and N-[(2-aminocyclohexyl)aryloxy]acetamide derivatives
Journal of Medicinal Chemistry 1988.0
A potent new class of .kappa.-receptor agonist: 4-substituted 1-(arylacetyl)-2-[(dialkylamino)methyl]piperazines
Journal of Medicinal Chemistry 1993.0
Highly selective .kappa.-opioid analgesics. 3. Synthesis and structure-activity relationships of novel N-[2-(1-pyrrolidinyl)-4- or -5-substituted cyclohexyl]arylacetamide derivatives
Journal of Medicinal Chemistry 1990.0
(1S)-1-(Aminomethyl)-2-(arylacetyl)-1,2,3,4-tetrahydroisoquinoline and heterocycle-condensed tetrahydropyridine derivatives: members of a novel class of very potent .kappa. opioid analgesics
Journal of Medicinal Chemistry 1991.0
N,N-Diethyl-4-[(3-hydroxyphenyl)(piperidin-4-yl)amino] benzamide derivatives: The development of diaryl amino piperidines as potent δ opioid receptor agonists with in vivo anti-nociceptive activity in rodent models
Bioorganic & Medicinal Chemistry Letters 2009.0
Highly selective .kappa.-opioid analgesics. 2. Synthesis and structure activity relationships of novel N-(2-aminocyclohexyl)arylacetamide derivatives
Journal of Medicinal Chemistry 1989.0
Structure activity studies related to 2-(3,4-dichlorophenyl)-N-methyl-N-[2-(1-pyrrolidinyl)-1-substituted-ethyl]acetamides: a novel series of potent and selective .kappa.-opioid agonists
Journal of Medicinal Chemistry 1991.0
Structure-activity relationships of trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidine antagonists for .mu.- and .kappa.-opioid receptors
Journal of Medicinal Chemistry 1993.0