Thiopyrano[2,3,4-cd]indoles as 5-Lipoxygenase Inhibitors: Synthesis, Biological Profile, and Resolution of 2-[2-[1-(4-Chlorobenzyl)-4-methyl-6-[(5-phenylpyridin-2-yl)methoxy]-4,5-dihydro-1H-thiopyrano[2,3,4-cd]indol-2-yl]ethoxy]butanoic Acid

Journal of Medicinal Chemistry
1994.0

Abstract

Leukotriene biosynthesis inhibitors have potential as new therapies for asthma and inflammatory diseases. The recently disclosed thiopyrano[2,3,4-cd]indole class of 5-lipoxygenase (5-LO) inhibitors has been investigated with particular emphasis on the side chain bearing the acidic functionality. The SAR studies have shown that the inclusion of a heteroatom (O or S) in conjunction with an alpha-ethyl substituted acid leads to inhibitors of improved potency. The most potent inhibitor prepared contains a 2-ethoxybutanoic acid side chain. This compound, 14d (2-[2-[1-(4-chlorobenzyl)-4-methyl-6-[(5-phenylpyridin-2-yl)methox y]- 4,5-dihydro-1H-thiopyrano[2,3,4-cd]indol-2-yl]ethoxy]-butanoic acid, L-699,333), inhibits 5-HPETE production by human 5-LO and LTB4 biosynthesis by human PMN leukocytes and human whole blood (IC50s of 22 nM, 7 nM and 3.8 microM, respectively). The racemic acid 14d has been shown to be functionally active in a rat pleurisy model (inhibition of LTB4, ED50 = 0.65 mg/kg, 6 h pretreatment) and in the hyperreactive rat model of antigen-induced dyspnea (50% inhibition at 2 and 4 h pretreatment; 0.5 mg/kg po). In addition, 14d shows excellent functional activity against antigen-induced bronchoconstriction in the conscious squirrel monkey [89% inhibition of the increase in RL and 68% inhibition in the decrease in Cdyn (0.1 mg/kg, n = 3)] and in the conscious sheep models of asthma (iv infusion at 2.5 micrograms/kg/min). Acid 14d is highly selective as an inhibitor of 5-LO activity when compared to the inhibition of human 15-LO, porcine 12-LO and ram seminal vesicle cyclooxygenase (IC50 > 5 microM) or competition in a FLAP binding assay (IC50 > 10 microM). Resolution of 14d affords 14g, the most potent diastereomer, which inhibits the 5-HPETE production of human 5-LO and LTB4 biosynthesis of human PMN leukocytes and human whole blood with IC50s of 8 nM, 4 nM, and 1 microM respectively. The in vitro and in vivo profile of 14d is comparable to that of MK-0591, which has showed biochemical efficacy in inhibiting ex vivo LTB4 biosynthesis and urinary LTE4 excretion in clinical trials.

Knowledge Graph

Similar Paper

Thiopyrano[2,3,4-cd]indoles as 5-Lipoxygenase Inhibitors: Synthesis, Biological Profile, and Resolution of 2-[2-[1-(4-Chlorobenzyl)-4-methyl-6-[(5-phenylpyridin-2-yl)methoxy]-4,5-dihydro-1H-thiopyrano[2,3,4-cd]indol-2-yl]ethoxy]butanoic Acid
Journal of Medicinal Chemistry 1994.0
Development of L-689,065 - the prototype of a new class of potent 5-lipoxygenase inhibitors
Bioorganic & Medicinal Chemistry Letters 1992.0
Further studies on ethyl 5-hydroxy-indole-3-carboxylate scaffold: Design, synthesis and evaluation of 2-phenylthiomethyl-indole derivatives as efficient inhibitors of human 5-lipoxygenase
European Journal of Medicinal Chemistry 2014.0
Structural Optimization and Biological Evaluation of 2-Substituted 5-Hydroxyindole-3-carboxylates as Potent Inhibitors of Human 5-Lipoxygenase
Journal of Medicinal Chemistry 2009.0
Substituted (Pyridylmethoxy)naphthalenes as Potent and Orally Active 5-Lipoxygenase Inhibitors:  Synthesis, Biological Profile, and Pharmacokinetics of L-739,010
Journal of Medicinal Chemistry 1997.0
Design, synthesis, and 5-lipoxygenase-inhibiting properties of 1-thio-substituted butadienes
Journal of Medicinal Chemistry 1990.0
Indole derivatives as potent inhibitors of 5-lipoxygenase: Design, synthesis, biological evaluation, and molecular modeling
Bioorganic & Medicinal Chemistry Letters 2007.0
Naphthalenic Lignan Lactones as Selective, Nonredox 5-Lipoxygenase Inhibitors. Synthesis and Biological Activity of (Methoxyalkyl)thiazole and Methoxytetrahydropyran Hybrids
Journal of Medicinal Chemistry 1994.0
Synthesis and biological evaluation of a class of 5-benzylidene-2-phenyl-thiazolinones as potent 5-lipoxygenase inhibitors
Bioorganic & Medicinal Chemistry 2012.0
SAR-study on a new class of imidazo[1,2-a]pyridine-based inhibitors of 5-lipoxygenase
Bioorganic & Medicinal Chemistry Letters 2012.0